Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Діаграми стану систем з обмеженою розчинністю компонентів у твердому стані



Такі типи систем найчастіше мають місце в металевих сплавах. При утворенні обмежених твердих розчинів зустрічаються два типи діаграм стану: з евтектичним і з перитектичним перетворенням.

Діаграма стану систем з утворенням обмежених твердих розчинів і евтектичним перетворенням (рис. 4.5)

а б

Рисунок 4.5 – Діаграма стану (а) і криві охолодження (б) системи з обмеженою розчинністю компонентів у твердому стані з евтектичним перетворенням

Лінією ліквідусу на цій діаграмі є лінія СЕD, а лінією солідусу – лінія CFEGD. На горизонтальній частині цієї лінії FEG відбувається евтектичне перетворення: РЕ (F +G (читається: рідина складу точки Е перетворюється в суміш двох фаз - -твердого розчину складу точки F і -твердого розчину складу точки G), де  і  - обмежені тверді розчини компонента В у компоненті А () і компонента А в компоненті В ().

Крім цих ліній на діаграмі є і дві нові – лінії так званого сольвусу, тобто обмеженої розчинності у твердому стані – FH і GI. Перша з них показує границю розчинності компонента В у компоненті А, тобто граничний вміст компонента В в -твердому розчині. Відповідно, лінія GI є граничним вмістом компонента А в -твердому розчині. З положення цих ліній видно, що взаємна розчинність компонентів із зниженням температури зменшується.

Вказані лінії діаграми ділять її площу на 3 однофазні та 3 двофазні області. До однофазних належать область рідкого розчину (вище лінії ліквідусу CED), область CFHA -фази і область DGIB -фази. Двофазними є області CEF і DEG, в яких відбувається кристалізація первинних кристалів відповідно - і -твердих розчинів, а також область існування двох твердих розчинів  і  - HFGI. В цій області відбуваєтьсявторинна кристалізація, в якій, на відміну від первинної, не бере участі рідка фаза. Вторинна кристалізація полягає в тому, що після первинної кристалізації будь-якого сплаву, що лежить між точками H і I, і в складі структури якого є - чи -тверді розчини, ці тверді розчини при подальшому охолодженні до температур ліній сольвусів FH чи GI стають насиченими, а нижче цих ліній – перенасиченими. Оскільки стан перенасиченого твердого розчину є незрівноваженим, починається його розпад із виділенням надлишкового компонента.

Найчастіше це відбувається на межах зерен відповідного твердого розчину у вигляді окремих дисперсних часток або суцільних прошарків (рис. 4.6).

Як приклад розглянемо процеси кристалізації двох сплавів II і III. Первинна кристалізація сплаву II відбувається в інтервалі температур 4-5, де вся рідина закристалізується у вигляді -твердого розчину. До точки 6, яка знаходиться на лінії сольвусу FH, цей розчин є ненасиченим компонентом В, у точці 6 він стає гранично насиченим, а нижче від неї – перенасиченим і при подальшому його охолодженні до точки 7 з нього виділяється надлишковий елемент – компонент В у вигляді -твердого розчину (рис. 4.6).

Рисунок 4.6 – Схеми мікроструктури сплаву II (рис. 4.5)

Таку остаточну структуру мають усі сплави в області FHF1 діаграми. Оскільки вторинна кристалізація відбувається в твердому стані при невисоких температурах, дифузія проходить досить повільно і вторинна кристалізація за описаним механізмом може відбутися досить повно тільки в умовах дуже повільного охолодження. В реальних же умовах кристалізації зберігається певне перенасичення -фази компонентом В. Але перенасичений твердий розчин є нестійким і в подальшому довільно розпадається, що супроводжується суттєвою зміною властивостей сплаву, перш за все - механічних: підвищенням твердості та міцності, зниженням пластичності і в’язкості. Таке явище називається старіння або дисперсійне тверднення, яке широко використовується при термічній обробці кольорових металів, зокрема алюмінієвих сплавів (див. лаб. роботу № 9).

Аналогічно відбувається кристалізація сплавів, що знаходяться між точками G та I (наприклад, сплаву VI). Тільки в цих сплавах перенасиченим розчином є -твердий розчин і з нього виділяється при охолодженні нижче лінії GI надлишковий компонент А у вигляді -твердого розчину.

Кристалізація сплаву III відбувається в три етапи. На першому з них, в інтервалі температур 8-9, з рідини виділяються первинні кристали -фази. Склад рідини при цьому змінюється вздовж лінії ліквідусу від точки 8 до евтектичної точки Е, а склад -фази – по лінії солідусу від точки 11 до точки F. Другим етапом є евтектична кристалізація в точці 9:

РЕ (F +G).

Нижче від неї до точки 10 (до кімнатної температури) проходить вторинна кристалізація – розпад перенасиченого -твердого розчину з виділенням вторинних кристалів II. Водночас відбувається розпад -твердого розчину, що входить до складу евтектики, з виділенням вторинних кристалів II. Але вторинні кристали II i II не утворюють нових окремих структурних складових, а виділяються на вже існуючих тих же фазах евтектики. Тому остаточна структура цього сплаву III, як і будь-якого іншого доевтектичного сплаву, має всього дві складові: первинні кристали -фази та евтектику (+), як показано на рис. 4.7.

Рисунок 4.7 – Схема мікроструктури сплаву доевтектичного складу

Кристалізація будь-якого заевтектичного сплаву відбувається аналогічно, лише  - і -фази міняються місцями.

Діаграми стану з перитектичним перетворенням (рис. 4.8).

Цей варіант діаграми реалізується тоді, коли температури кристалізації компонентів дуже відрізняються.

Лінія ліквідусу – CPD, солідусу – CNPD, сольвусу – NR I MQ.

Діаграма має три однофазні області: рідкого розчину (вище від лінії ліквідусу), -фази (ACNRA), -фази (QMDBQ) та три двофазні – рідини та кристалів  (CNPC), рідини та кристалів  (MPDM), кристалів - і -твердих розчинів (RNMQR). В останній області можна виділити окремо області RNN1R з -фазою та вторинними кристалами II – (+II) і MQM1M (+II).

На лінії NMP відбувається перитектичне перетворення: рідина та кристали, що раніше виділилися з неї, у взаємодії між собою утворюють нову тверду фазу: РР+NM (читається: рідина складу точки Р і кристали -фази складу точки N перетворюються на кристали -фази складу точки М). Остання реакція перитектичного перетворення відбувається з повним використанням двох вихідних фаз лише для одного сплаву – складу точки МI. Для будь-якого іншого сплаву одна з вихідних фаз буде надлишковою і частина її залишиться після перитектичного перетворення. Так, для будь-якого сплаву, що лежить між точками N і M (наприклад, сплаву III), надлишковою фазою буде -фаза, а для сплавів між точками M і P (наприклад, сплавів IV i V) надлишковою фазою буде рідина.

Рисунок 4.8 – Діаграма стану системи з обмеженою розчинністю компонентів у твердому стані і перитектичним перетворенням

Структура сплаву III після повного охолодження складатиметься з кристалів -фази, що утворилися при перитектичному перетворенні, та кристалів -фази, що вціліли при перитектичному перетворенні (рис. 4.9, а). При охолодженні цього сплаву від точки 8 до точки 9 з цих фаз виділяються вторинні кристали (відбувається вторинна кристалізація: II; II), але нові структурні складові, як це було зазначено раніше, не утворюються.

В сплаві IV при охолодженні від точки 1 до точки 2 з рідини виділяються первинні кристали -твердого розчину, склад яких змінюється по лінії солідусу від точки 6 до точки N. Водночас склад рідини змінюється вздовж лінії ліквідусу від точки 1 до точки Р. На лінії NM фази такого складу взаємодіють між собою за перитектичною реакцією з утворенням -фази. Після перитектичного перетворення в точці 2 залишиться в надлишку рідка фаза і при охолодженні від точки 2 до точки 3 з неї виділяються вже первинні кристали -твердого розчину. При охолодженні сплаву IV від точки 3 до точки 4 матимемо однофазний -твердий розчин, в якому ніяких змін не буде. В точці 4 -твердий розчин стає гранично насиченим компонентом А і при подальшому його охолодженні в інтервалі температур 4-5 відбувається вторинна кристалізація з виділенням кристалів II (рис. 4.9, б)

а б

Рисунок 4.9 – Схеми мікроструктур сплавів III (а) і IV (б) (рис.4.8)

1. Діаграми стану систем з хімічними сполуками

У подвійних системах можуть утворюватись хімічні сполуки між компонентами із загальною формулою АmBn. Найчастіше ці хімічні сполуки утворюються безпосередньо з рідини: РАm Bn

Конкретний вигляд діаграми визначається взаємодією її компонентів, передусім розчинністю їх у твердому стані, а також наявністю певних перетворень. При цьому хімічна сполука розглядається як окремий компонент. На рис. 4.10 показані два можливих варіанти: а – з відсутністю розчинності компонентів у твердому стані і б – з утворенням обмежених твердих розчинів на основі як чистих компонентів, так і хімічної сполуки — -, - і -фаз.

а б

Рисунок 4.10 – Діаграми стану систем з хімічними сполуками

Систему, діаграма стану якої зображена на рис. 4.10, а, можна розглядати як сукупність двох систем з компонентами А і АmBn та B і AmBn.. Ці дві системи розділені вертикаллю FK. У кожній з підсистем утворюється власна евтектика – Е1 як суміш двох фаз – (А + АmBn) і Е2 (В+ АmBn). Кристалізація і формування структур, наприклад, сплавів I, II, III, IV відбувається аналогічно тим, що були розглянуті нами в п. 2 та на рис. 4.3 цієї лабораторної роботи.

Для систем, діаграма стану яких показана на рис. 4.10, б, характерним є утворення обмежених твердих розчинів: твердого розчину хімічної сполуки AmBn в компоненті А – -фази; твердого розчину хімічної сполуки в компоненті В – -фази та твердих розчинів компонентів А і В в хімічній сполуці – відповідно 1-фази і 2-фази. Зазвичай ці тверді розчини 1 і 2 розглядаються як один твердий розчин — -фаза. Тому на діаграмі (рис. 4.10, б) область FIMLHF розглядається як однофазна з твердим розчином . Пунктирна лінія FF1 ділить цю область на дві частини: ліворуч від неї -фазу можна вважати твердим розчином компонента А в хімічній сполуці AmBn, праворуч – твердим розчином компонента В в цій же сполуці.

Евтектики в цій системі складаються з суміші кристалів твердих розчинів:

Е1(+), Е2(+).

Кристалізація сплавів і формування остаточних структур в цій системі відбувається аналогічно розглянутих в п. 3.1 і на рис. 4.5 цієї лабораторної роботи.

2. Діаграми стану систем з поліморфними компонентами

Поліморфні перетворення одного або обох компонентів сплаву суттєво змінюють його структуру і властивості. Такі перетворення є в багатьох промислових сплавах, наприклад, сплавах заліза, титану та ін.

Конкретний вигляд діаграми стану визначається не тільки взаємодією компонентів, а і їх поліморфних модифікацій. Крім того, важливу роль відіграє наявність або відсутність взаємної розчинності компонентів та їх поліморфних модифікацій у твердому стані. Тому діаграми стану з поліморфними компонентами надзвичайно численні. Розглянемо тільки одну систему, в якій обидва компоненти є поліморфними і їх високотемпературні модифікації (А і В) утворюють неперервний ряд -твердих розчинів (рис. 4.11), а низькотемпературні А і В - обмежені - і 1- тверді розчини.

Лінії KE і EL, на яких починається перетворення -твердого розчину, перетинаються в одній точці Е, яка називається евтектоїдною, а лінія GEH — лінією евтектоїдного перетворення:  Е(G+1H) (читається: твердий розчин  – складу точки Е розкладається на суміш двох фаз — твердого розчину  – складу точки G і твердого розчину  1 складу точки Н.

Рисунок 4.11 – Діаграма стану системи, компоненти якої мають поліморфні перетворення

Лінії GF i HI на діаграмі стану є лініями сольвусу. Сплави в інтервалі між точками G і E називаються доевтектоїдними, а сплави в інтервалі між точками E і H – заевтектоїдними. Схеми структур цих сплавів зображаються аналогічно тим, які зображені на рис. 4.4.





Дата публикования: 2014-11-18; Прочитано: 944 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...