Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Інтенсифікація теплообміну



Із загального рівняння теплопередачі випливає, що при заданих поверхні нагрівання та температурному режимі теплоносіїв кількість перенесеної теплоти визначається коефіцієнтом теплопередачі

, (6.5)

де – відповідно термічні опори тепловіддачі з боку первинного теплоносія, теплопровідності матеріалу стінки, тепловіддачі з боку вторинного теплоносія, теплопровідності забруднень і загальний опір теплопередачі.

При роботі теплообмінника відбувається процес теплопередачі між теплоносіями через поверхню теплообміну та з одним з теплоносіїв і навколишнім середовищем через стінку корпусу. Для зменшення втрат теплоти у навколишнє середовище теплообмін треба зменшити, що досягається установкою теплової ізоляції на корпусі та кришках. При цьому коефіцієнт теплопередачі зменшується за рахунок додаткового термічного опору ізоляції R із= δ із/ λ із. Теплопередачу між теплоносіями, навпаки, треба збільшити (інтенсифікувати), що зменшить поверхню нагрівання, і, як наслідок, металоємність апарату. Зменшення загального термічного опру може бути досягнуто:

- збільшенням швидкості теплоносіїв, що зменшує термічний опір тепловіддачі Rα, але при цьому збільшується гідравлічний опір теплообмінника і витрати енергії на транспортування теплоносія;

- руйнуванням гідродинамічного пограничного шару теплоносіїв або його зменшенням;

- використанням засобів теплообміну зі зміною агрегатного стану теплоносіїв;

- використанням теплоносіїв з кращими теплофізичними характеристиками;

- застосуванням стінок з шорсткою поверхнею, що збільшує степінь турбулізації потоку;

- застосуванням стінок з більшим коефіцієнтом теплопровідності матеріалів;

- переходом від ламінарного до турбулентного режиму руху теплоносія;

- зміною гідродинамічного руху двофазового потоку;

- зменшенням товщини забруднень.

Головним чинником, що зменшує кількість переданої теплоти в процесі теплопередачі, є термічний опір пограничного шару, а також утворення застійних зон, особливо в міжтрубному просторі. Для ліквідації застійних зон встановлюють розподільні камери. Для руйнування приграничного шару в міжтрубному просторі використовують турбулізатори, які виготовляють у вигляді різних типів оребрення на трубах, особливо з боку низьких коефіцієнтів тепловіддачі. Крім того, оребрення збільшує поверхню теплообміну і коефіцієнт тепловіддачі. Застосовують труби з повздовжніми (рис. 6.13, а), розрізними спіралеподібними ребрами (рис. 6.13, б); поперечними ребрами різного профілю (круглі, квадратні, прямокутні й т.ін.) (рис. 6.13, в), спіральні ребра (рис. 6.13, г). Ефективність ребра залежить від його форми, висоти і матеріалу, воно повинно бути одним цілим з трубою (приварено, припаяно і т.д.). У трубному просторі використовують турбулізуючі вставки (спіралі, діафрагми, диски) (рис. 6.14, а, б) і насадки (кільця, кульки) (рис. 6.14, в), які поміщаються в трубу. Окрім вставок використовують шорстку поверхню у вигляді канавок як усередині, так і ззовні труб. Турбулізатори сприяють швидшому переходу до турбулентного режиму при однакових витратах. У трубах зі вставками у вигляді діафрагми перехід до турбулентного режиму відбувається при Re=140, а без вставок – при Re=2300. Оребрення і турбулізатори збільшують гідравлічний опір теплообмінників.

а б
в г
  Рис. 6.13. Труби з оребренням:   а – повздовжнє оребрення; б – розрізне спіралеподібне; в – поперечне; г – спіральне.
Рис. 6.14. Труби з турбулізуючими вставками:   а – вставки у вигляді діафрагми; б – вставки у вигляді дисків; в – спіральні. Рис. 6.15. Схема пластинчасто-спірального теплообмінника:   1, 4 – вхідний і вихідний патрубки первинного теплоносія; 2, 3 – торцеві кришки; 5 – гофровані листи; 6, 7 –вхідний і вихідний патрубки вторинного теплоносія.

З точки зору використання явища турбулізації є створення пластинчасто-спірального теплообмінника (рис. 6.15). Поверхня теплообміну складається з штампованих у вигляді хвилі металевих листів 5, які при стиковці утворюють трубний і міжтрубний простір. З торців теплообмінник закривається кришками 2 і 3. Вхід і вихід первинного теплоносія здійснюється через патрубки 1, 4, а вхід і вихід вторинного теплоносія – через патрубки 6, 7.





Дата публикования: 2014-11-26; Прочитано: 959 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...