Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Основна властивість частки



Якщо ділене і дільник помножити або поділити на те саме, відмінне від нуля і виражене дробом число, то значення частки не зміниться, тобто

, де

1) Щоб поділити суму (різницю) двох дробових чисел на третє дробове число, досить поділити на це число кожний доданок (змен­шуване і від’ємник) і знайдені частки додати (відняти), тобто

Наприклад.

2) Щоб поділити на дробове число добуток двох дробових чисел, досить поділити на це число один із співмножників і частку помно­жити на другий співмножник:

Наприклад.

3) Щоб поділити дробове число на добуток двох дробових чисел, досить поділити його послідовно на кожний із співмножників, тобто

4) Щоб поділити дробове число на частку від ділення двох дробо­вих чисел, досить поділити це число на ділене і помножити на дільник, тобто

Наприклад.

Отже, над дробами можна виконувати такі ж арифметичні дії, як і над натуральними числами.

Питання для узагальнення

– Які дії можна виконувати над дробами?

– Як додаються дроби?

– Як поділити дроби?

– Яка основна властивість частки дробів?

– Який дріб називається правильним (неправильним)?

5. Упорядкованість множини додатніх раціональних чисел

Раціональні числа рівні, якщо вони представлені рівними дробами.

Означення. Нехай а і b – додатні раціональні числа. Тоді а < b, якщо існує таке додатнє раціональне число с, що а + с = b.

Для того, щоб різниця додатних раціональних чисел а і b існувала, необхідно і достатньо, щоб b < а.

Відношення «менше» транзитивне і антисиметричне, тобто це є відношенням порядку на множині Q , а множина Q є упорядкованою множиною.

Властивості множини додатних раціональних чисел (Q ):

1. Немає найменшого числа.

2. Між будь-якими двома різними раціональними числами є нескінченно багато чисел множини Q .

Доведемо, що у множині Q немає найменшого числа.

Нехай число – найменше в множині Q .

Утворимо число . Легко впевнитись у тому, що < (mn < mn + m), тобто знайшлось таке додатнє раціональне число, яке менше . Отже, наше припущення невірне. В множині Q немає найменшого числа.

Другу властивість покажемо на прикладі.

Візьмемо два раціональних числа . Чи існує таке раціональне число х, що < х < . Так існує. Для цього достатньо знайти середнє арифметичне даних чисел , таким чином < < .

Отже, в множині додатних раціональних чисел немає найменшого числа і між будь-якими двома різними додатними раціональними числами існує нескінченно багато чисел цієї множини.

Питання для узагальнення

– В чому полягає упорядкованість множини додатних раціональних чисел?

6. Запис додатніх раціональних чисел у вигляді десяткових дробів і відсотків

Означення. Десятковим дробом називається дріб, знаменником якого є , де п Є N, і який записано в позиційній десятковій системі числення так: записано чисельник і в ньому справа наліво відділено п цифр (десяткових знаків).

Наприклад.

Якщо число цифр чисельника не більше від показника п (тобто не більше, ніж кількість нулів у степені десяти, що є знаменником), то зліва дописують необхідну кількість нулів.

Наприклад. і т. д.

Зазвичай, десяткові дроби значно більше застосовують при обчисленні, ніж звичайні. Це пояснюється ще й тим, що в основу метричної системи мір також взято число 10, а тому при практичних вимірюваннях здебільшого дістаємо десяткові дроби. Через те тепер у школі після першого ознайомлення із звичайними дробами спочатку вивчають дії над десятковими дробами, а потім над звичайними.

Основна властивість десяткового дробу: дописування нулів справа дробової частини запису десяткового дробу не змінює його значення.

Наприклад, 0,3 = 0,30 = 0,300 =..., що випливає з основної властивості звичайних дробів:

Будь-яке натуральне число атат-1... можна подати у вигляді десяткового дробу атат-1... , 0...0.

При перенесенні у десятковому дробові коми на і цифр праворуч значення дробу збільшується в разів, а ліворуч – зменшується в разів. Це випливає з самого означення десяткового дробу.

Правило. Щоб даний десятковий дріб помножити або поділити на , треба перенести кому на і цифр відповідно вправо або вліво.

Оскільки у дробовій частині запису десяткових дробів можна справа дописувати нулі, від чого значення дробу не змінюється, то в загальному вигляді два десяткових дроби можна записати так, що вони матимуть однакову кількість цифр після коми, тобто будуть зведені до спільного знаменника.

Наприклад, щоб порівняти десяткові дроби 12,34 і 6,36472, перший дріб можна записати так: 12,34000, і тоді порівняння десяткових дробів можна звести до порівняння їх чисельників. Проте практично для порівняння десяткових дробів дописувати нулі немає потреби. Досить порівняти цілі частини; той дріб виражає більше число, у якого ціла частина більша. Якщо цілі частини рівні, той дріб виражає більше число, у якого більше десятих часток, і т. д.

Правило. Десяткові дроби слід додавати, як натуральні числа, не звертаючи уваги на коми, тільки всі розряди слід підписувати під відповідними їм розрядами, і в одержаній сумі відокремити справа стільки десяткових знаків, скільки їх має доданок з найбільшою кількістю десяткових знаків.

Примітка. Тут сказано «з найбільшою кількістю десяткових знаків», а не «стільки десяткових знаків, скільки їх має кожний доданок» тому, що практично нулі у десятковій частині не дописують, а просто їх мають на увазі.

Наприклад. + 23,516

982,8

1006,316

Закони додавання, доведені для звичайних дробів, мають місце і для десяткових дробів, оскільки десяткові дроби є окремим випадком звичайних.

Віднімання виконується аналогічно:

Наприклад. 415,634

¯ 12,78

402,854

Правило. Десяткові дроби слід перемножати, як натуральні числа, не звертаючи уваги на коми, а потім відокремити в добутку стільки десяткових знаків, скільки їх у множеному і множнику разом.

Наприклад. 12,36

Х 1,214

+ 4944

1236

15,00504

Для десяткових дробів зберігаються перевірені уже для звичайних дробів закони множення.

Як показано вище, в результаті виконання дій додавання, віднімання і множення над десятковими дробами завжди дістаємо десяткові дроби.

Розглянемо ділення десяткового дробу на десятковий дріб.

Наприклад,

1)

2)

Як уже зазначалось, будь-яке ціле число можна записати у ви­гляді десяткового дробу, з нулями після коми.

Наприклад, 5 = 5,000...

Виникає запитання: чи будь-яке дробове число можна зобразити у вигляді десяткового дробу? Щоб дати відповідь на це запитання, проаналізуємо, за якою ознакою приклади записано у правій і у лівій колонках?

Відповідні дробові числа правої і лівої колонок мають однакові чисельники, проте залежно від знаменників або процес ділення чисельника на знаменник закінчується і в результаті дістаємо скінченний десятковий дріб (зліва), або не закінчується і дістаємо нескінченний десятковий дріб (справа), причому обов’язково періодичний – у ньому одна або кілька цифр періодично повторюються. При уважному аналізі можна помітити, чим відрізняються знаменники дробів правої і лівої колонок.

Теорема 1. Для того щоб звичайний нескоротний дріб можна було перетворити у десятковий, необхідно й достатньо, щоб канонічний розклад його знаменника не містив жодних простих множників, крім 2 і 5.

Наслідок. Будь-який нескоротний дріб, канонічний розклад знаменника якого не містить ніяких множників, крім 2 і 5, можна по­дати у вигляді десяткового дробу, причому двома способами:

1) діленням його чисельника на знаменник;

2) домноженням чисельника і знаменника дробу на відповідний степінь 2 або 5.

Приклади.

1) або

2) або

3) або

Практично досить часто використовують десяткові дроби із сталим знаменником 100. Такі дроби легко порівнювати між собою, бо не треба попередньо зводити їх до спільного знаменника. Ці дроби, як відомо, називають відсотками і позначають 1%.

Процент – одна сота частина числа або одиниці (назва похо­дить від двох латинських слів «рrо сеntum» – «від ста» – застаріла назва «відсоток»).

Будь-який десятковий дріб можна записати у відсотках. Для цього його треба помножити на 100:

0,37 = 37%; 1,251 = 25,1%;

6 = 600%; 0,4 = 40%.

Будь-яке число відсотків можна записати у вигляді десяткового дробу. Для цього треба число відсотків поділити на 100:

238% = 2,38; 53% = 0,53;

2% = 0,02; 0,017% = 0,00017.

Щоб знайти відсотки від числа, треба це число поділити на 100 й помножити на число відсотків. Або: записати відсотки у вигляді десяткового дробу й помножити число на цей дріб.

Наприклад, знайти 24% від 80.

І спосіб: 80: 100 · 24 = 19,2.

ІІ спосіб: 80 · 0,24 = 19,2.

Щоб знайти число за його відсотками, тобто якщо відомо, скільки відсотків від шуканого числа становить дане число, треба помножити дане число на 100 й поділити на число відсотків.

Наприклад, знайти число, якщо 35% його становить 14.

І спосіб: 14 · 100: 35 = 40.

ІІ спосіб: 14: 0,35 = 40.

Щоб знайти, скільки відсотків становить одне число від іншого, треба перше число поділити на друге, а одержаний десятковий дріб записати у вигляді відсотків (тобто помножити на 100) або: помножити перше число на 100 і результат поділити на друге число.

Наприклад, треба визначити, скільки відсотків становить 24 від 40.

І спосіб: 24: 40 = 0,6.

0,6 · 100 = 60%

ІІ спосіб: 24 · 100: 40 = 60%.

Отже, д есятковим дробом називається дріб, знаменником якого є , де п Є N, і який записано в позиційній десятковій системі числення так: записано чисельник і в ньому справа наліво відділено п цифр (десяткових знаків). Десяткові дроби значно більше застосовують при обчисленні, ніж звичайні. Через те тепер у школі після першого ознайомлення із звичайними дробами спочатку вивчають дії над десятковими дробами, а потім над звичайними.

Питання для узагальнення

– Який дріб називається десятковим?

– В чому полягає основна властивість десяткового дробу?

– Як подати звичайний дріб у вигляді десяткового?

– Що означає відсоток?

– Як записати відсотки у вигляді десяткового дробу?

– Як знайти число за його відсотком?

– Як знайти відсоток від числа?

7. Нескінчені десяткові періодичні дроби

– не можна записати скінченим десятковим дробом.

– 0,857114285714 нескінчений періодичний дріб.

Група цифр, які повторюються після коми в десятковому записі числа називається періодом, а нескінчений десятковий дріб, який має період у своєму записі називається періодичним.

Теорема. Якщо нескоротний дріб – не перетворюється у скінченний десятковий, то його можна записати у вигляді нескінченного десяткового періодичного дробу (такий десятковий запис дробу, у якому, починаючи з деякого місця, одна і та сама цифра або су­купність цифр без кінця повторюються в певному порядку).

Сукупність цифр, які повторюються, називається періодом. У пе­ріоді буде не більше ніж п – 1 цифра. Наприклад,

Розрізняють чисті і мішані періодичні десяткові дроби.

Чистим періодичним десятковим дробом називається періодичний десятковий дріб, у якого період починається безпосеред­ньо після коми: 0,333..., 0,232323...

Мішаним періодичним десятковим дробом називається періодичний десятковий дріб, у якого період починається не відразу після коми: 0,08333..., 17,12777... При цьому число, що стоїть між комою і початком періоду, називається доперіодичною частиною.

Періодичні десяткові дроби записують компактніше, беручи пе­ріод у дужки:

0,232323…= 0,(23) – нуль цілих і 23 в періоді;

0,08333… = 0,08(3) – нуль цілих, нуль вісім до періоду і 3 в періоді.

Як записати нескінченний десятковий періодичний дріб у вигляді звичайного?

Чистий періодичний десятковий дріб дорівнює звичайному дробові, чисельник якого є число, що стоїть у періоді, а знаменник число, записане стількома дев’ятками, скільки цифр у періоді.

Приклади. 1) 2)

Мішаний періодичний десятковий дріб дорівнює звичайному дробові, чисельником якого є різниця між числом, що стоїть до періоду і в періоді, і числом, що стоїть до періоду, а знаменником – число, записане стількома дев’ятками, скільки цифр у періоді, і з стількома нулями на кінці, скільки цифр між комою і періодом.

Приклади. 1.

Перевірка.

2.

3. 0,8(61) = .

Отже, розрізняють чисті і мішані періодичні десяткові дроби. Нескінченні десяткові періодичні дроби можна подати у вигляді звичайного і навпаки.

Питання для узагальнення

– Який дріб називається нескінченним десятковим періодичним дробом?

– Який дріб називається чистим періодичним десятковим дробом?

– Який дріб називається мішаним періодичним десятковим дробом?

– Якому звичайному дробові дорівнює чистий періодичний десятковий дріб?

– Якому звичайному дробові дорівнює мішаний періодичний десятковий дріб?

III. Заключна частина





Дата публикования: 2014-11-26; Прочитано: 1531 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.068 с)...