![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
В среде биологов господствует редукционизм, в основе которого лежат унаследованные от Лапласа представления об однозначной детерминированности причинно-следственных связей. Такой подход назван Л.В. Белоусовым (2001) микроредукционизмом, поскольку при этом предмет исследования прогрессивно расчленяется на все более мелкие пространственно-временные звенья. Однако торжество молекулярной биологии и генетики развития неожиданно блестяще подтвердило отжившие, казалось бы, концепции градиентов и морфогенетических полей и привело к возрождению холистического подхода в биологии развития (Gilbert et al., 1996).
В биологии редукционизм проявляется как убежденность в жесткой детерминации морфофункциональной организации биологических объектов их геномом. Представления о жестком тотальном генетическом контроле морфологии, функций и поведения организма не оставляют места для проявлений самоорганизации. Вопреки этим представлениям, накапливается все больше свидетельств самоорганизации (самосборки, эмерджентности) в разнообразных биологических системах всех уровней, от молекулярного и клеточного до популяционного.
Сборка макромолекулярных комплексов, например, при построении цитоскелетных структур, уже традиционно рассматривается как самоорганизация, самосборка, в частности, с позиций молекулярного «витализма», допускающего возможность автономной самоорганизации макромолекул в высоко упорядоченные структуры (Kirschner et al., 2000).
На уровне клеточных популяций детально исследована самоорганизация пространственных паттернов, радиальных и спиральных, в бактериальных колониях. Например, спиральный паттерн колоний движущихся бактерий Bacillus subtilis возникает за счет координированного перемещения клеток параллельно друг другу с отчетливой тенденцией к закручиванию клеточных потоков. Самосогласованная организация сложных паттернов даже дала повод писать о «мудрости» бактерий (Ben-Jacob,1998).
Классическим, одним из первых, примером биологической самоорганизации стала агрегация амеб акразиомицета Dictyostelium. Как известно, агрегирующие клетки движутся в направлении возрастания концентрации аттрактанта, цАМФ; клеточный источник аттрактанта становится центром агрегации. Агрегация амеб происходит неравномерно, с формированием концентрических или спиральных волн клеток, т.е. пространственно-временной упорядоченности вокруг центров агрегации (рис. 30). В системе агрегирующих амеб Dictyostelium с несколькими центрами притяжения возникает конкуренция между этими центрами; вся область оказывается разделенной на участки, связанные с центрами притяжения (Том, 1970). Таким образом в ходе дальнейшей агрегации исходно беспорядочное, случайное расположение агрегирующих амебоидных клеток приобретает черты радиального или спирального паттерна (рис.31). Позже образуется компактный агрегат, клетки которого дифференцируются.
![]() |
Рис. 30. Картина агрегации амеб Dictyostelium discoideum
(Баблоянц, 1990)
Еще один пример пространственной самоорганизации в популяциях насекомых, приводимый Пригожиным и Стенгерс (1986) - агрегация личинок жука Dendroctonus micans, происходящая под влиянием аттрактанта – феромона, синтезируемого личинками. Личинки перемещаются в направлении возрастания концентрации феромона; чем больше личинок скапливается вместе, тем выше концентрация продуцируемого ими аттрактанта. Поэтому агрегация личинок представляет собой автокаталитическую реакцию с самоусилением. Подобный очень простой механизм «коллективного разума» функционирует также при построении термитника: сначала термиты приносят и беспорядочно раскладывают кусочки земли, содержащие аттрактант; случайное расположение нескольких таких комочков вблизи друг друга определяет центр привлечения большего числа термитов, после чего вступает в действие механизм обратной связи, самоусиления.
![]() |
Рис. 31. Последовательность структурирования популяции амеб Dictyostelium (Lackie, 1986)
Коллективное поведение особей в популяции, обычно объясняемое генетически, может быть результатом взаимодействий в системе, т.е. самоорганизации. О. Тоффлер в предисловии к книге Пригожина и Стенгерс (1986) пишет о ставших классическими результатах исследований по разделению муравьев на «тружеников» и «лентяев»; как оказалось, после разрушения сложившихся в популяции связей в каждой группе, как среди «тружеников», так и среди «лентяев», произошло расслоение с выделением тех же двух групп и внезапным превращением «лентяев» в «тружеников» и наоборот. Показано, что самосинхронизация и распределение задач в колониях муравьев осуществляются без воздействия каких-либо внешних сигналов. Сходным образом воспроизводится расслоение сообществ на лидеров и ведомых. Таким образом, целостность и иерархическая структура сообществ воспроизводится, «регенерирует», подобно тому, как планария регенерирует удаленную голову или заднюю часть.
Один из наиболее эффектных примеров самоорганизации - cинхронизация вспышек светлячков Юго-Восточной Азии: ночью тысячи самцов на деревьях вспыхивают синхронно (рис.32). Сначала согласованность отдельных биологических осцилляторов-светлячков слаба, и система организуется медленно. Затем синхронизация ускоряется, что и ожидается в системе с обратной связью, и быстро распространяется, захватывая все большее скопление светлячков на дереве. Наконец, все светлячки начинают вспыхивать синхронно (примерно раз в секунду), образуя своеобразный маяк для привлечения самок. Взаимная синхронизация – кооперативное явление, временной аналог фазового перехода. Дано математическое описание процесса синхронизации вспышек светлячков, хотя достаточно трудно анализировать динамику даже одного нелинейного осциллятора, и тем более целой популяции таких осцилляторов (Mirollo, Strogatz,1990).
Взаимная синхронизация наблюдается и в других популяциях биологических осцилляторов. Примеры включают сверчков, стрекочущих в унисон, синхронизацию электрических импульсов клеток сердца и нейронных сетей, секреции инсулина клетками гепатопанкреаса. В таких ассоциациях пространственная и временная упорядоченность возникает путем нелинейных взаимодействий.
![]() |
Рис. 32. Синхронная вспышка светлячков на дереве
(Peterson, 1991)
Популяции животных самоорганизуются, генерируя коллективные паттерны, и функционируют как интегрированное целое, обладающее новыми свойствами. Синхронизированное коллективное поведение насекомых, птиц, рыб уже рассматривается как пример самоорганизации, самосборки (Parrish, Edelstein-Keshet, 1999; Whitesides, Grzybovsky, 2002). Коллективное поведение скоплений животных не всегда адаптивно, оно может возникать и без действия Дарвиновского отбора. Однако свойства ансамблей организмов или клеток могут стать объектом селекции – вероятным примером служит происхождение многоклеточных животных.
В высокой степени способность к формированию разнообразных пространственно-временных паттернов проявляется нервными клетками. Дж. Эдельмен (G. Edelman) отмечает поразительное разнообразие и сложность организации мозга; даже у близнецов найдены очень большие различия нейронной организации. Полиморфизм и вариабельность нейронной организации позволяет мозгу реагировать на разнообразие среды (Tononi, Edelman, 1998). Самоорганизация нейронов - синхронизация активности в группах нейронов и сигнала двух взаимосвязанных нейронов - обнаружена в клеточной культуре.
Отдельные теоретики приходят даже к отрицанию теории естественного отбора Дарвина, не объясняющей, по их мнению, возникновения и многообразия жизни. С. Кауфман (S. Kauffman, 1993) полагает, что самоорганизация – фундаментальная тенденция эволюции, и фактором биологической эволюции служит антихаос (стихийное возникновение порядка). Лима-де Фариа (Lima-de-Faria) изложил концепцию эволюции без отбора (автоэволюции с возникновением биологических форм и функций без участия хромосом и генома), основанную на выявлении рядов сходных форм в неживой и живой природе. По мнению автора, гены выполняют свою роль лишь на вторичном уровне: в закреплении выбора варианта формы, создании шаблона для повторения порядка, ускорении и контроле формообразования (Лима-де Фариа, 1991).
Итак, в ходе биологической самоорганизации нелинейные взаимодействия элементов могут вести к сложному и неожиданному поведению их системы с формированием упорядоченного в пространстве или времени паттерна на базе хаотической динамики отдельных элементов системы.
Дата публикования: 2014-11-19; Прочитано: 880 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!