![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Завдання 3.1. Задані координати вершин трикутника АВС. Знайти:
а) довжину і рівняння медіани ВЕ;
б) довжину і рівняння висоти ВD;
в) внутрішній кут А у радіанах з точністю до 0,01;
г) координати центру ваги трикутника;
д) площу трикутника;
е) рівняння прямої, яка проходить через т. Е паралельно прямій ВС;
ж) зробити креслення.
1.
. 2.
.
3.
. 4.
.
5.
. 6.
.
7.
. 8.
.
9.
. 10.
.
11.
. 12.
.
13.
. 14.
.
15.
. 16.
.
17.
. 18.
.
19.
. 20.
.
21.
. 22.
.
23.
. 24.
.
25.
. 26.
.
27.
. 28.
.
29.
. 30.
.
Завдання 3.2. Приведіть рівняння ліній до канонічного вигляду, визначте тип лінії. На кресленні вкажіть тільки ту частину, яка описується заданим рівнянням.
1.
;
2.
;
3.
;
4.
;
5.
;
6.
;
7.
;
8.
;
9.
;
10.
;
11.
;
12.
;
13.
;
14. y
;
15.
;
16.
;
17.
;
18.
;
19.
;
20.
;
21.
;
22.
;
23.
;
24.
;
25.
;
26.
;
27.
;
28.
;
29.
;
30.
.
Завдання 3.3. Розв’язати задачу. Зробити рисунок.
1. Скласти рівняння гіперболи та її асимптот, якщо відомо, що гіпербола симетрична відносно осей координат, один з її фокусів збігається з центром кола
, а ексцентриситет дорівнює 1,25.
2. Знайти відстань від фокуса гіперболи
, абсциса якого додатна, до діагоналі прямокутника з вершинами у точках перетину гіперболи з еліпсом
.
3. Скласти рівняння параболи та ії директриси, якщо відомо, що парабола проходить через точки перетину прямої
з колом
і вісь Ох є віссю симетрії параболи.
4. Скласти рівняння кола, яке проходить через фокуси еліпса
і має центр у вершині еліпса, ордината якої від'ємна. Знайти точки перетину цього кола з віссю Оу.
5. Скласти рівняння вершин трикутника, утвореного асимптотами гіперболи 4 х 2 ‑ 9 у 2 +36=0 і прямою, яка проходить через точки перетину гіперболи з параболою 4 х 2 ‑27 у =0.
6. Скласти рівняння еліпса, симетричного відносно осей координат, якщо один з його фокусів збігається з фокусом параболи
, а відстані однієї з його точок до фокусів дорівнюють 4 і 6.
7. Скласти рівняння асимптот гіперболи, обчислити кут між ними і знайти її ексцентриситет, якщо фокуси гіперболи розташовані симетрично відносно осі Оу на осі Ох і 3 а =2 с.
8. Скласти рівняння кола, центр якого у правому фокусі еліпса 9 х 2+16 у 2=144, а радіус дорівнює відстані між директрисами еліпса.
9. Скласти рівняння гіперболи, фокуси якої розташовані у вершинах еліпса 16 х 2+25 у 2 = 400, а вершини гіперболи збігаються з фокусами еліпса. Знайти рівняння асимптот і директрис гіперболи.
10. Фокуси еліпса розташовані на осі Ох симетрично відносно початку координат, а один з них збігається з фокусом параболи у = ‑16 х. Відстані однієї з точок еліпса до його фокусів рівні 3 і 7. Скласти рівняння еліпса.
11. Скласти рівняння кола, центр якого знаходиться у точці перетину прямої х-2у+4=0 з віссю ординат, а радіус дорівнює відстані між директрисами еліпса 4 х 2+9 у 2=36.
12. Скласти рівняння кола, центр якого збігається з правою вершиною гіперболи 4 х 2 ‑ 9 у 2=36, а радіус дорівнює відстані між фокусами гіперболи.
13. Скласти рівняння еліпса, симетричного відносно осей координат, відстань між фокусами якого дорівнює
, а директриси мають рівняння
.
14. Знайти канонічне рівняння гіперболи, яка проходить через точку М(‑5,3), а ексцентриситет її дорівнює 2.
15. Скласти рівняння гіперболи, симетричної відносно осей координат, яка проходить через точку М(5; 3), а її уявна вісь рівна 12. Знайти рівняння асимптот і директрис гіперболи.
16. Скласти рівняння еліпса, симетричного відносно осі координат, правий фокус якого має координати (2; 0), а рівняння директрис х = ± 8. Знайти ексцентриситет еліпса.
17. Скласти рівняння параболи, симетричної відносно осі абсцис, вершина якого збігається з початком координат, а відстань між її директрисою і фокусом рівна ексцентриситету гіперболи
.
18. Скласти рівняння гіперболи, симетричної відносно осей координат, якщо відомо, що рівняння її асимптот у = ± 1,2х і вона проходить через точку М(8; 5). Знайти ексцентриситет і директриси гіперболи.
19. Скласти рівняння кола, яке дотикається директриси параболи х 2=12 у і має центр у фокусі цієї параболи.
20. Фокуси гіперболи збігаються з фокусами еліпса 9 х 2+25 у 2=225.
Скласти канонічне рівняння гіперболи, знайти рівняння її директрис і асимптот, якщо ексцентриситет гіперболи дорівнює 2.
21. Скласти канонічне рівняння еліпса, симетричного відносно осей координат, якщо відстань від точки М(8; 12), через яку проходить еліпс, до лівого фокуса дорівнює 20. Знайти ексцентриситет і директриси еліпса.
22. Скласти канонічне рівняння еліпса, симетричного відносно осей координат, якщо відомо, що відстань між фокусами дорівнює 4, а відстань між директрисами дорівнює 5.
23. Скласти рівняння кола, центр якого знаходиться у правому фокусі еліпса 9 х 2+16 у 2=144, а радіус дорівнює відстані між директрисами еліпса.
24. Написати рівняння параболи, симетричної відносно осі абсцис, фокус якої збігається з фокусом еліпса 16 х 2+20 у 2=320.
25. Правий фокус еліпса, симетричного відносно осей координат, збігається з фокусом параболи у 2=16 х. Відстані однієї з точок еліпса до фокусів дорівнюють 3 і 7. Скласти рівняння еліпса і його директрис.
26. Знайти рівняння директрис і асимптот гіперболи, симетричної відносно осей координат, якщо вона проходить через точку М(5; 3), а її уявна піввісь рівна 6.
27. Знайти канонічне рівняння гіперболи, симетричної відносно осей координат, яка проходить через т. М(9; 8), а її асимптоти мають рівняння
. Знайти рівняння директрис і ексцентриситет гіперболи.
28. Скласти канонічне рівняння еліпса, симетричного відносно осей координат, відстань між фокусами якого дорівнює 2, а відстань між директрисами дорівнює 10.
29. Знайти канонічне рівняння еліпса, симетричного відносно осей координат, вершини якого мають координати (0;
) і (0; ‑
), а ексцентриситет дорівнює
.
30. Скласти рівняння гіперболи, симетричної відносно осей координат, вершини якої мають координати (‑6; 0) і (6; 0), а відстань між фокусами дорівнює 16. Знайти рівняння асимптот і директрис гіперболи.
Дата публикования: 2014-11-04; Прочитано: 1901 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
