![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Покажем, наконец, как реализовать семафоры с помощью очередей сообщений. Для этого воспользуемся более хитрой конструкцией, введя новый синхронизирующий процесс. Этот процесс имеет счетчик и очередь для процессов, ожидающих включения семафора. Для того чтобы выполнить операции P и V, процессы посылают синхронизирующему процессу сообщения, в которых указывают свои потребности, после чего ожидают получения подтверждения от синхронизирующего процесса.
После получения сообщения синхронизирующий процесс проверяет значение счетчика, чтобы выяснить, можно ли совершить требуемую операцию. Операция V всегда может быть выполнена, в то время как операция P может потребовать блокирования процесса. Если операция может быть совершена, то она выполняется, и синхронизирующий процесс посылает подтверждающее сообщение. Если процесс должен быть блокирован, то его идентификатор заносится в очередь блокированных процессов, и подтверждение не посылается. Позднее, когда какой-либо из других процессов выполнит операцию V, один из блокированных процессов удаляется из очереди ожидания и получает соответствующее подтверждение.
Поскольку мы показали ранее, как из семафоров построить мониторы, мы доказали эквивалентность мониторов, семафоров и сообщений.
Заключение
Для организации синхронизации процессов могут применяться специальные механизмы высокого уровня, блокирующие процесс, ожидающий входа в критическую секцию или наступления своей очереди для использования совместного ресурса. К таким механизмам относятся, например, семафоры, мониторы и сообщения. Все эти конструкции являются эквивалентными, т. е., используя любую из них, можно реализовать две оставшиеся.
|
|
|
1) В некоторых русских изданиях их еще называют переменными состояния.
| 7. Лекция: Тупики: версия для печати и PDA В лекции рассматриваются вопросы взаимоблокировок, тупиковых ситуаций и "зависаний" системы |
|
|
|
20.1.25 Введение
В предыдущих лекциях мы рассматривали способы синхронизации процессов, которые позволяют процессам успешно кооперироваться. Однако в некоторых случаях могут возникнуть непредвиденные затруднения. Предположим, что несколько процессов конкурируют за обладание конечным числом ресурсов. Если запрашиваемый процессом ресурс недоступен, ОС переводит данный процесс в состояние ожидания. В случае когда требуемый ресурс удерживается другим ожидающим процессом, первый процесс не сможет сменить свое состояние. Такая ситуация называется тупиком (deadlock). Говорят, что в мультипрограммной системе процесс находится в состоянии тупика, если он ожидает события, которое никогда не произойдет. Системная тупиковая ситуация, или "зависание системы", является следствием того, что один или более процессов находятся в состоянии тупика. Иногда подобные ситуации называют взаимоблокировками. В общем случае проблема тупиков эффективного решения не имеет.
Рассмотрим пример. Предположим, что два процесса осуществляют вывод с ленты на принтер. Один из них успел монополизировать ленту и претендует на принтер, а другой наоборот. После этого оба процесса оказываются заблокированными в ожидании второго ресурса (см. рис. 7.1).
Рис. 7.1. Пример тупиковой ситуации
Определение. Множество процессов находится в тупиковой ситуации, если каждый процесс из множества ожидает события, которое может вызвать только другой процесс данного множества. Так как все процессы чего-то ожидают, то ни один из них не сможет инициировать событие, которое разбудило бы другого члена множества и, следовательно, все процессы будут спать вместе.
Выше приведен пример взаимоблокировки, возникающей при работе с так называемыми выделенными устройствами. Тупики, однако, могут иметь место и в других ситуациях. Hапример, в системах управления базами данных записи могут быть локализованы процессами, чтобы избежать состояния гонок (см. лекцию 5 "Алгоритмы синхронизации"). В этом случае может получиться так, что один из процессов заблокировал записи, необходимые другому процессу, и наоборот. Таким образом, тупики могут иметь место как на аппаратных, так и на программных ресурсах.
Тупики также могут быть вызваны ошибками программирования. Например, процесс может напрасно ждать открытия семафора, потому что в некорректно написанном приложении эту операцию забыли предусмотреть. Другой причиной бесконечного ожидания может быть дискриминационная политика по отношению к некоторым процессам. Однако чаще всего событие, которого ждет процесс в тупиковой ситуации, – освобождение ресурса, поэтому в дальнейшем будут рассмотрены методы борьбы с тупиками ресурсного типа.
Ресурсами могут быть как устройства, так и данные. Hекоторые ресурсы допускают разделение между процессами, то есть являются разделяемыми ресурсами. Например, память, процессор, диски коллективно используются процессами. Другие не допускают разделения, то есть являются выделенными, например лентопротяжное устройство. К взаимоблокировке может привести использование как выделенных, так и разделяемых ресурсов. Например, чтение с разделяемого диска может одновременно осуществляться несколькими процессами, тогда как запись предполагает исключительный доступ к данным на диске. Можно считать, что часть диска, куда происходит запись, выделена конкретному процессу. Поэтому в дальнейшем мы будем исходить из предположения, что тупики связаны с выделенными ресурсами, то есть тупики возникают, когда процессу предоставляется эксклюзивный доступ к устройствам, файлам и другим ресурсам.
Традиционная последовательность событий при работе с ресурсом состоит из запроса, использования и освобождения ресурса. Тип запроса зависит от природы ресурса и от ОС. Запрос может быть явным, например специальный вызов request, или неявным – open для открытия файла. Обычно, если ресурс занят и запрос отклонен, запрашивающий процесс переходит в состояние ожидания.
Далее в данной лекции будут рассматриваться вопросы обнаружения, предотвращения, обхода тупиков и восстановления после тупиков. Как правило, борьба с тупиками – очень дорогостоящее мероприятие. Тем не менее для ряда систем, например для систем реального времени, иного выхода нет.
20.1.26 Условия возникновения тупиков
Условия возникновения тупиков были сформулированы Коффманом, Элфиком и Шошани в 1970 г.
Рис. 7.2. Пример надежного состояния для системы с 3 пользователями и 11 устройствами.
Данное состояние надежно. Последующие действия системы могут быть таковы. Вначале удовлетворить запросы третьего пользователя, затем дождаться, когда он закончит работу и освободит свои три устройства. Затем можно обслужить первого и второго пользователей. То есть система удовлетворяет только те запросы, которые оставляют ее в надежном состоянии, и отклоняет остальные.
Термин ненадежное состояние не предполагает, что обязательно возникнут тупики. Он лишь говорит о том, что в случае неблагоприятной последовательности событий система может зайти в тупик.
Данный алгоритм обладает тем достоинством, что при его использовании нет необходимости в перераспределении ресурсов и откате процессов назад. Однако использование этого метода требует выполнения ряда условий.
Рис. 7.3. Граф ресурсов
Визуально легко обнаружить наличие тупика, но нужны также формальные алгоритмы, реализуемые на компьютере.
Один из таких алгоритмов описан в [Таненбаум, 2002], там же можно найти ссылки на другие алгоритмы.
Существуют и другие способы обнаружения тупиков, применимые также в ситуациях, когда имеется несколько ресурсов каждого типа. Так в [Дейтел, 1987] описан способ, называемый редукцией графа распределения ресурсов, а в [Таненбаум, 2002] – матричный алгоритм.
20.1.29.4 Восстановление после тупиков
Обнаружив тупик, можно вывести из него систему, нарушив одно из условий существования тупика. При этом, возможно, несколько процессов частично или полностью потеряют результаты проделанной работы.
Сложность восстановления обусловлена рядом факторов.
|
| 8. Лекция: Организация памяти компьютера. Простейшие схемы управления памятью: версия для печати и PDA В настоящей лекции рассматриваются простейшие способы управления памятью в ОС. Физическая память компьютера имеет иерархическую структуру. Программа представляет собой набор сегментов в логическом адресном пространстве. ОС осуществляет связывание логических и физических адресных пространств. |
|
|
|
20.1.30 Введение
Главная задача компьютерной системы – выполнять программы. Программы вместе с данными, к которым они имеют доступ, в процессе выполнения должны (по крайней мере частично) находиться в оперативной памяти. Операционной системе приходится решать задачу распределения памяти между пользовательскими процессами и компонентами ОС. Эта деятельность называется управлением памятью. Таким образом, память (storage, memory) является важнейшим ресурсом, требующим тщательного управления. В недавнем прошлом память была самым дорогим ресурсом.
Часть ОС, которая отвечает за управление памятью, называется менеджером памяти.
20.1.30.1 Физическая организация памяти компьютера
Запоминающие устройства компьютера разделяют, как минимум, на два уровня: основную (главную, оперативную, физическую) и вторичную (внешнюю) память.
Основная память представляет собой упорядоченный массив однобайтовых ячеек, каждая из которых имеет свой уникальный адрес (номер). Процессор извлекает команду из основной памяти, декодирует и выполняет ее. Для выполнения команды могут потребоваться обращения еще к нескольким ячейкам основной памяти. Обычно основная память изготавливается с применением полупроводниковых технологий и теряет свое содержимое при отключении питания.
Вторичную память (это главным образом диски) также можно рассматривать как одномерное линейное адресное пространство, состоящее из последовательности байтов. В отличие от оперативной памяти, она является энергонезависимой, имеет существенно большую емкость и используется в качестве расширения основной памяти.
Эту схему можно дополнить еще несколькими промежуточными уровнями, как показано на рис. 8.1. Разновидности памяти могут быть объединены в иерархию по убыванию времени доступа, возрастанию цены и увеличению емкости.
Рис. 8.1. Иерархия памяти
Многоуровневую схему используют следующим образом. Информация, которая находится в памяти верхнего уровня, обычно хранится также на уровнях с большими номерами. Если процессор не обнаруживает нужную информацию на i-м уровне, он начинает искать ее на следующих уровнях. Когда нужная информация найдена, она переносится в более быстрые уровни.
Локальность
Оказывается, при таком способе организации по мере снижения скорости доступа к уровню памяти снижается также и частота обращений к нему.
Ключевую роль здесь играет свойство реальных программ, в течение ограниченного отрезка времени способных работать с небольшим набором адресов памяти. Это эмпирически наблюдаемое свойство известно как принцип локальности или локализации обращений.
Свойство локальности (соседние в пространстве и времени объекты характеризуются похожими свойствами) присуще не только функционированию ОС, но и природе вообще. В случае ОС свойство локальности объяснимо, если учесть, как пишутся программы и как хранятся данные, то есть обычно в течение какого-то отрезка времени ограниченный фрагмент кода работает с ограниченным набором данных. Эту часть кода и данных удается разместить в памяти с быстрым доступом. В результате реальное время доступа к памяти определяется временем доступа к верхним уровням, что и обусловливает эффективность использования иерархической схемы. Надо сказать, что описываемая организация вычислительной системы во многом имитирует деятельность человеческого мозга при переработке информации. Действительно, решая конкретную проблему, человек работает с небольшим объемом информации, храня не относящиеся к делу сведения в своей памяти или во внешней памяти (например, в книгах).
Кэш процессора обычно является частью аппаратуры, поэтому менеджер памяти ОС занимается распределением информации главным образом в основной и внешней памяти компьютера. В некоторых схемах потоки между оперативной и внешней памятью регулируются программистом (см. например, далее оверлейные структуры), однако это связано с затратами времени программиста, так что подобную деятельность стараются возложить на ОС.
Адреса в основной памяти, характеризующие реальное расположение данных в физической памяти, называются физическими адресами. Набор физических адресов, с которым работает программа, называют физическим адресным пространством.
20.1.30.2 Логическая память
Аппаратная организация памяти в виде линейного набора ячеек не соответствует представлениям программиста о том, как организовано хранение программ и данных. Большинство программ представляет собой набор модулей, созданных независимо друг от друга. Иногда все модули, входящие в состав процесса, располагаются в памяти один за другим, образуя линейное пространство адресов. Однако чаще модули помещаются в разные области памяти и используются по-разному.
Дата публикования: 2014-11-04; Прочитано: 440 | Нарушение авторского права страницы | Мы поможем в написании вашей работы! ![]() |