Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Пентозний цикл – це ланцюг послідовних хімічних перетворень вуглеводів, у результаті якого в тканинах і клітинах звільняється хімічна енергія і утворюються пентози, необхідні для синтезу нуклеїнових кислот, нуклеотидів і коферментів. Його часто називають апотомічним циклом, оскільки при окисленні глюкози відщеплюється один атом вуглецю. Іноді його називають прямим, або гексозомонофосфатним шляхом окислення вуглеводів, оскільки тут глюкозо-6-фосфат піддається прямому окисленню (з відщепленням CO2) без утворення фруктозо-1,6-дифосфата і двох фосфотріоз (схема 5).
Схема 5. Перетворення пентозофосфатів
Частка пентозного циклу в кількісному перетворенні глюкози невелика. У ссавців активність циклу висока в ембріональних тканинах, печінці, наднирниках, пухлинах, молочній і щитовидній залозах, еритроцитах. Пентозний цикл дає організму відновлений НАДФ – донор водню для біосинтезу жирних кислот, холестерину, пуринових і піримідинових основ, кетостероїдів, глюкози, ін. Пентозний цикл складається з таких стадій:
1. Глюкозо-6-фосфат, що утворюється в результаті фосфороліза глікогену або фосфорилування глюкози, під впливом глюкозо-6-фосфатдегідрогенази окислюється і перетворюється в 6-монофосфоглюкон:
2. 6-Монофосфоглюкон під впливом ферменту глюконолактонази приєднує молекулу води, перетворюючись на 6-фосфоглюконову кислоту:
3. 6-Фосфоглюконова кислота за участю фосфоглюконатдегідрогенази піддається окислювальному декарбоксилуванню, що призводить до утворення кетопентози – D-рибулозо-5-фосфата і другої молекули НАДФ×H2:
4. D-Рибулозо-5-фосфат під впливом ферменту рибулозофосфат-3-епімерази оборотно перетворюється на свій епімер – D-ксилулозо-5-фосфат (а). У деяких випадках D-рибулозо-5-фосфат може оборотно перетворюватися на свій альдоізомер – D-рибозо-5-фосфат (б):
а) |
б) |
D-Рибозо-5-фосфат використовується клітинами для синтезу РНК і нуклеотидів (АМФ, АДФ, АТФ). Часто пентозний цикл на даній стадії завершується. Його можна підсумувати рівнянням:
Глюкозо-6-фосфат + 2НАДФ+ Û D-Рибозо-5-фосфат + CO2 +2HАДФ×H2
Пентози, які не використані для синтезу нуклеїнових кислот і нуклеотидів, витрачаються на біосинтез інших сполук, регенерацію глюкози, з якої починався пентозний цикл.
5. З D-кcилулозо-5-фосфата і D-рибозо-5-фосфата під впливом транскетолази може утворюватися D-седогептулозо-7-фосфат і 3-фосфогліцериновий альдегід:
6. 3-Фосфогліцериновий альдегід може включатися в 4-у стадію анаеробного розщеплення вуглеводів або під впливом ферменту трансальдолази взаємодіяти з D-седогептулозо-7-фосфатом, утворюючи фруктозо-6-фосфат і еритрозо-4-фосфат:
Фруктозо-6-фосфат може ізомеризуватися в глюкозо-6-фосфат і вступати в 1-у стадію пентозного циклу або включатися в 2-у стадію анаеробного розщеплення вуглеводів.
7. Еритрозо-4-фосфат під впливом ферменту транскетолази взаємодіє з ксилулозо-5-фосфатом, що призводить до утворення фруктозо-6-фосфата і 3-фосфогліцеринового альдегіду (їх перетворення див. вище):
Реакції пентозного циклу можна підсумувати рівнянням:
6 Глюкозо-6-фосфат + 7Н2О + 12НАДФ+ ® 6СО2 + 12НАДФ×Н2 + 5 Глюкозо-6-фосфат + H3PO4.
Отже, виходячи із сумарного рівняння бачимо, що при повному окисленні 1 молекули глюкози утворюється 12 молекул відновленого НАДФ, які в процесі окислення у мітохондріях можуть дати 12 ´ 3 = 36 молекул АТФ. У макроергічних зв’язках 36 молекул АТФ зосереджено 36 ´ 42 = 1512 кДж енергії. Однак останнім часом прийнято вважати, що утворені за пентозним циклом відновлені форми НАДФ використовуються в основному в процесах синтезу різних сполук (жирних кислот, холестерину, тощо) в організмі.
Пентозному циклу належить важлива роль в синтезі жирів. Так, у жировій тканині його питома вага складає 50% по відношенню до гліколізу, у печінці – 2,5 – 3 і в м'язовій тканині – 0,3%. Припускають, що останні стадії пентозного циклу забезпечують жирові клітини гліцерином, який утворюється з 3-фосфогліцеринового альдегіду.
Окрім описаних вище шляхів перетворення вуглеводів, в тканинах тваринних організмів були знайдені інші цикли, зокрема, перетворення моносахаридів шляхом їх з'єднання з піримідиновими основами і т.д.
Співвідношення між аеробним і анаеробним процесами перетворення вуглеводів в організмі. Основним шляхом перетворення вуглеводів у тканинах організму є поєднання анаеробного перетворення (гліколіз і глікогеноліз) і аеробного окислення за циклом трикарбонових кислот. Ці фази перетворення вуглеводів мають багато спільного. Обидва процеси розпочинаються з утворення фосфорних ефірів глюкози. Крім того, в обох випадках утворюються однакові проміжні продукти (3-фосфогліцериновий альдегід, фосфогліцеринова і фосфоенолпіровиноградна кислота, тощо). Центральною спільною ланкою, яка об'єднує ці процеси, є піровиноградна кислота, наступне перетворення якої залежно від умов може проходити як аеробним, так і анаеробним шляхом. Спряження процесів гліколізу і тканинного дихання зумовлено також тим, що багато реакцій гліколізу та аеробного перетворення вуглеводів каталізуються одними і тими самими ферментами і коферментами – зокрема НАД+, НАДФ+, ФМН, ФАД та деякими іншими.
Важливим шляхом регуляції співвідношення і зв'язку між анаеробною й аеробною фазами перетворення вуглеводів є ефект, виявлений Л. Пастером і названий на честь дослідника ефектом Пастера. Суть його полягає в тому, що під впливом кисню (за аеробних умов) анаеробне перетворення вуглеводів пригнічується. Отже, при наявності кисню анаеробний процес (гліколіз або спиртове бродіння) замінюється енергетично більш економним для клітини процесом перетворення вуглеводів – аеробним. За цих умов при менших витратах субстрату (глюкози) організм отримує значно більшу кількість енергії. Тому при наявності кисню значно зменшується використання субстрату – глюкози.
Дослідженнями O.В. Палладіна, В.O. Енгельгардта та інших учених встановлено, що основною причиною, яка зумовлює пастерівський ефект є, очевидно, своєрідна конкуренція між ферментними системами, які забезпечують аеробне й анаеробне перетворення вуглеводів, та захоплення неорганічного фосфату, необхідного для утворення АТФ.
У процесі обміну АДФ легко переходить із гіалоплазми в мітохондрії, де за аеробних умов інтенсивно використовується для синтезу АТФ, тобто ферментні системи аеробного перетворення вуглеводів ефективніше використовують неорганічний фосфат і АДФ. Зменшення вмісту АДФ у гіалоплазмі зумовлює гальмування гліколізу. Однак взаємозв'язок анаеробного й аеробного перетворення вуглеводів, очевидно, вивчено ще не повністю. Відомо, що в деяких органах і тканинах (сітківка ока, лейкоцити, ембріональна тканина, злоякісні пухлини) гліколіз досить ефективно проходить і за аеробних умов.
За певних умов гліколіз здатний пригнічувати аеробне перетворення вуглеводів. Пригнічення процесу дихання гліколізом дістало назву ефекту Кребтрі. Цей ефект найчастіше спостерігається при високих концентраціях глюкози, коли резерви АТФ досить швидко використовуються для синтезу гексозофосфорних ефірів – глюкозо-6-фосфату і фруктозо-1,6-дифосфату. При цьому вміст АТФ у гіалоплазмі значно зменшується, що призводить до переходу частини її з мітохондрій, де виникає дефіцит макроергів і пригнічується аеробний процес. Послабити ефект Кребтрі можна шляхом додаткового введення АТФ, що сприятиме активуванню процесів фосфорилювання глюкози. Глюкозо-6-фосфат стимулює і гліколіз, і дихання, тому залежно від умов у більшій або меншій мірі виявляються ефект Пастера або ефект Кребтрі.
Дата публикования: 2014-11-04; Прочитано: 2781 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!