Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Number and reality



Many aspects of the natural world display strong numerical patterns, and these may have been the source of some number mysticism. For example, crystals can have rotational symmetries that are twofold, threefold, fourfold, and sixfold but not fivefold—a curious exception that was recognized empirically by the ancient Greeks and proved mathematically in the 19th century.

An especially significant number is the golden ratio, usually symbolized by the Greek letter ϕ. It goes back to early Greek mathematics under the name “extreme and mean ratio” and refers to a division of a line segment in such a manner that the ratio of the whole to the larger part is the same as that of the larger part to the smaller. This ratio is precisely (1 + √5)/2, or approximately 1.618034. The popular name golden ratio, or golden number, appears to have been introduced by the German mathematician Martin Ohm in Die reine Elementarmathematik (1835; “Pure Elementary Mathematics”). If not, the term is not much older and certainly does not go back to ancient Greece as is often claimed.

In art and architecture the golden number is often said to be associated with elegance of proportion; some claim that it was used by the Greeks in the design of the Parthenon. There is little evidence for these claims. Any building has so many different lengths that some ratios are bound to be close to the golden number or for that matter to any other ratio that is not too large or small. The golden number is also often cited in connection with the shell of the nautilus, but this too is a misunderstanding. The nautilus shell has a beautiful mathematical form, a so-called logarithmic (or equiangular) spiral. In such a spiral each successive turn is magnified in size by a fixed amount. There is a logarithmic spiral associated with the golden number, and in this case the fixed amount is precisely ϕ. However, the spiral of the nautilus does not have the ratio ϕ. Logarithmic spirals exist with any given number as their ratio, and the nautilus ratio has no special significance in mathematics.

The golden number is, however, legitimately associated with plants. This connection involves the Fibonacci numbers (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144…), in which each number, starting with 2, is the sum of the previous two numbers. These numbers were first discussed in 1202 by the Italian mathematician Leonardo Pisano, who seems to have been given the nickname Fibonacci (son of Bonaccio) in the 19th century. The ratio of successive Fibonacci numbers, such as 34/21 or 55/34, gets closer and closer to ϕ as the size of the numbers increases. As a result, Fibonacci numbers and ϕ enjoy an intimate mathematical connection.

Fibonacci numbers are very common in the plant kingdom. Many flowers have 3, 5, 8, 13, 21, or 34 petals. Other numbers occur less commonly; typically they are twice a Fibonacci number, or they belong to the “anomalous series” 1, 3, 4, 7, 11, 18, 29… with the same rule of formation as the Fibonacci numbers but different initial values. Moreover, Fibonacci numbers occur in the seed heads of sunflowers and daisies. These are arranged as two families of interpenetrating spirals, and they typically contain, say, 55 clockwise spirals and 89 counterclockwise ones or some other pair of Fibonacci numbers.

This numerology is genuine, and it is related to the growth pattern of the plants. As the growing tip sprouts, new primordial — clumps of cells that will become special features such as seeds—arise along a generative spiral at successive multiples of a fixed angle. This angle is the one that produces the closest packing of primordial; and for sound mathematical reasons it is the golden angle: a fraction (1 − 1/ ϕ) of a full circle, or roughly 137.5 degrees.

I. Match the word with its meaning:





Дата публикования: 2014-11-02; Прочитано: 479 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...