Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Дифракція світла на дифракційній гратці 3 страница



де Z – ціле число. На основі вимірювань Резерфорда виникла гіпотеза, що величина Z дорівнює порядковому номеру елементу в таблиці Менделєєва. Пізніше ця гіпотеза підтвердилася.Знаючи заряд частинки , можна знайти, який „параметр удару” відповідає різним кутам удару .

На підставі результатів дослідів з розсіянням a -частинок тонкими фольгами Резерфорд запропонував ядерну модель атома.

Згідно з цією моделлю в центрі атома знаходиться ядро, в якому зосереджено позитивний заряд Ze і практично вся маса атома. Лінійні розміри ядра ~ .

Навколо ядра в області з лінійними розмірами ~ по замкнених орбітах рухаються Z електронів, утворюючи електронну оболонку атома.

Ядерна модель Резерфорда зовні дуже нагадує Сонячну систему: у центрі – ядро, навколо нього по орбітах рухаються електрони. Тому цю модель називають планетарною. Орбіти електронів в атомі стаціонарні, атому властива виняткова стійкість.

Стійкість атома не можна погодити з класичним поясненням ядерної моделі. Електрон по коловій орбіті рухається з доцентровим прискоренням , а згідно із законами електродинаміки він повинен випромінювати електромагнітні хвилі і внаслідок цього неперервно втрачати енер­гію. За класичними уявленнями це випромінювання повинно відбуватися безперервно. Тому електрон не зможе триматись на коловій орбіті – він повинен по спіралі наближатись до ядра, і частота його обертання навколо ядра повинна безперервно змінюватись. Електромагнітне випромінювання атома тому повинно мати неперер­вний, а не лінійчастий спектр.

Отже, застосування класичної електродинаміки до ядерної моделі атома привело до суперечності з експериментальними фактами.

2.Постулати Бора та їх дослідне підтвердження.

Перша спроба побудови якісно нової теорії атома була зроблена в 1913 р. Н.Бором. Він поставив перед собою мету зв’язати в єдине ціле емпіричні закономірності лінійчастих спектрів, ядерну модель атома Резерфорда і квантовий характер випромінювання та поглинання світла.

В основу своєї теорії Бор поклав три постулати.

Перший постулат Бора (постулат стаціонарних станів): існують деякі стаціонарні стани атома з відповідними значеннями енергії перебуваючи в яких, він не випромінює енергії.

Цим стаціонарним станам відповідають цілком визначені (стаціонарні) орбіти, по яких рухаються електрони, які, нез­важаючи на наявність у них прискорення, електромагнітних хвиль не випромінюють.

Другий постулат Бора (правило квантування орбіт): в стаціонарному стані атома електрон, рухаючись по коловій орбіті, повинен мати квантові значення моменту імпульсу, які задовольняють умову

, , ,

де m – маса електрона, – його швидкість, – радіус орбіти електрона.

Третій постулат Бора (правило частот): при переході атома з одного стаціонарного стану в інший випромінюється або поглинається один фотон з
енергією , яка дорівнює різниці енергій відповідних стаціонарних станів.

Випромінювання фотона відбувається при переході атома зі стану з більшою енергією у стан з меншою енергією , тобто при переході електрона з орбіти більш віддаленої від ядра на ближчу до ядра орбіту. Поглинання енергії супроводжується переходом атома у стан з біль­шою енергією, і електрон переходить на віддаленішу від ядра орбіту. Набір можливих частот квантових переходів і визначає лінійчастий спектр атома.

Постулати, висунуті Бором, дозволили розрахувати спектр атома водню і воднеподібних систем, а також теоретично розрахувати сталу Рідберга.

Тема 12. Основи квантової механіки.

7.Оптичні квантові генератори.

Практично інверсну заселеність середовища здійснено в оптичних квантових генераторах (ОКГ), або лазерах. Слово „лазер” скорочено означає підсилення світла за допомогою вимушеного випромінювання. Лазери генерують у видимій, інфрачервоній і ближній ультрафіолетовій областях.

Фізики М. Басов і О. Прохоров і американський вчений Ч. Таунс створили квантові генератори електромагнітних хвиль сантиметрового діапазону – мазери. Слово „мазер” – підсилення мікрохвиль за допомогою індукованого випромінювання.

Залежно від типу активного середовища лазери поділяються на твердотільні, газові, напівпровідникові і рідинні.

Класифікують лазери і за методами накачування – оптичні, теплові, хімічні, електроіонізаційні та ін.

Лазери обов’язково мають три основні компоненти:

1) активне середовище, в якому створюється стан з інверсною заселеністю енергетичних рівнів;

2) систему накачування – пристрій для створення інверсії в активному середовищі;

3) оптичний резонатор – пристрій, який формує вихідний світловий пучок.

Інверсну заселеність рівнів в ОКГ практично здійснюють за трирівневою схемою, яку запропонували М.Басов і О. Прохоров в 1955 р.

Один з перших ОКГ, що працюють за схемою трьох рівнів з твердим тілом як активним підсилюючим середовищем, був створений у 1960 р. Т. Мейманом. Підсилюючим середовищем у ньому є кристал рубіну, який за хімічним складом є оксидом алюмінію з домішкою оксиду хрому у кількості від 0,03 до 0,05%. При цьому в кристалічній ґратці окису алюмінію певну частку атомів Al замінено . Активною речовиною, в якій здійснюються вимушені переходи, в рубіні є іони .

На рис. 326 показана схема енергетичних рівнів іона хрому . У ньому над основним рівнем розміщені дві енергетичні смуги і , а між рівнем і смугою знаходиться метастабільний рівень , який складається з двох енергетичних станів. Накачування в лазері здійснюється потужним спалахом ксенонової лампи. Іони хрому, які до спалаху знаходились на основному рівні , внаслідок поглинання зеленого або синього світла, яке випромінює ксенонова лампа, переходять у збуджені стани і . Кожний фотон, який випадково народжується при спонтанних переходах, може породжувати в активному середовищі множину вимушених переходів, в результаті чого виникає ціла лавина вторинних фотонів, що є копією первинних. Однак спонтанні переходи мають випадковий характер, і фотони, що народжуються, спонтанно випромінюються в різних нап­рямках. Тому в різних напрямках поширюються і лавини вторинних фотонів. Отже, випромінювання, що складається з подібних лавин, не може мати високі коге­рентні властивості.

Для виділення напрямку лазерної генерації використовується елемент лазера – оптичний резонатор. Ним служить пара дзеркал, які встановлені паралельно одне одному. Найчастіше використовують дзеркала угнуті. Принципова схема ОКГ зображена на рис. 327, де 1 – активне середовище, 2 і 3 – суцільне і напівпрозоре дзеркала.

Розглянемо фотон, який рухається паралельно до осі кристала. Він породжує лавину фотонів, які летять у тому самому напрямку (рис. 327а). Частина цієї лавини частково пройде крізь напівпрозоре дзеркало 3 назовні, а частина відіб’ється і наростатиме в активному середовищі (рис. 327б). Коли лавина електронів дійде до суцільного дзеркала 2, вона частково поглинеться, але після відбивання від дзер­кала 2 підсилений потік фотонів знову рухатиметься так само, як і початковий, „зат­равочний” фотон (рис. 327в). Потік фотонів, який був багато разів підсилений і
вийшов з генератора крізь напівпрозоре дзеркало, утворює точно напрямлений пучок променів світла.

Довжина шляху, який проходить хвиля між двома відбиваннями, повинна становити ціле число довжин хвиль:

, або ,

де n=1, 2,…

Якщо виконано цю умову, то хвилі, які при кожному відбиванні виходять з генератора через дзеркало 3, когерентні між собою.

Перший газовий лазер на суміші атомів неону і гелію був створений Джованом в 1960 р. В газових лазерах інверсна заселеність рівнів здійснюється електричним розрядом, що збуджується в газах.

В гелій-неоновому лазері накачувавння відбувається в два етапи: гелій (He) служить носієм енергії збудження, а лазерне випромінювання дає неон (Ne). Із всіх рівнів He, крім основного , для роботи лазера мають значення метастабільні рівні і з енергіями 19,82 і 20,61еВ відповідно (рис. 328). Спонтанний перехід з цих рівнів на основний рівень „заборонений”, тобто відбувається з дуже малою імовірністю. Тому час життя атома на цих рівнях і дуже великий. На цих метастабільних рівнях атоми Нe нагромаджуються в результаті зіткнень з електронами, що утворюються в розряді. Але рівні гелію і майже збігаються з рівнями і неону (рис. 328). Завдяки цьому при зіткненнях збуджених атомів гелію з незбудженими атомами неону інтенсивно відбуваються безвипромінювальні переходи атомів гелію у незбуджений стан з передачею енергії атомам неону. Цей процес збудження атомів Ne на рис. 328 символічно показаний горизон­тальними пунктирними стрілками. В результаті концентрація атомів Ne на рівнях і сильно зростає, і виникає інверсна заселеість відносно рівнів і , а різниця заселеності рівнів і збільшується в декілька разів. Перехід атомів неону з рівня на рівень супроводжується генерацією червоного світла з довжиною хвилі =0,6328мкм. Цей лазер може генерувати й інфрачервоне випромінювання з довжинами хвиль і .

Принципова схема гелій-неонового лазера наведена на рис. 329.

Лазер складається з газорозрядної трубки Т діаметром 7–10 мм. Трубка заповнена сумішшю гелію (тиск ~1мм.рт.ст.) і неону (тиск ~0,1мм.рт.ст.). Кінці трубки закриті плоскопаралельними скляними або кварцовими пластинами і , які встановлені під кутом Брюстера до її осі. Це створює лінійну поляризацію лазерного випромінювання з електричним вектором, який паралельний до площини падіння. Дзеркала і , між якими розміщена трубка, сферичні з багатошаровими діелектричними покриттями. Вони мають високі коефіцієнти відбивання і практично не поглинають світла. Пропускна здатність дзеркала, через яке виходить випромінювання лазера, становить 2 %, а другого – менше 1 %. Між електродами трубки прикладається постійна напруга . Розрядний струм в трубці становить декілька десятків міліампер.

Лазерне випромінювання характеризується такими властивостями:

- високою часовою і просторовою когерентністю;

- строгою монохроматичністю ( );

- великою густиною потоку випромінювання;

- дуже малим кутовим розходженням в пучку.

Тема 13.Елементи фізики атомного ядра.

5.Радіоактивне випромінювання і його види.

розпадом називається випускання ядрами деяких хімічних елементів - частинок.

Альфа-випромінювання відхиляється електричними і магнітними полями, має високу іонізуючу здатність і малу проникну здатність (поглинається шаром алюмінію завтовшки ~ 0,05 мм). - випромінювання – це потік іонізованих атомів гелію. Заряд - частинки дорівнює +2е, а маса рівна масі ядра ізотопа гелію .

Відомо більше ніж дві сотні - активних ядер, в основному важких елементів . Лише невелика група - активних ядер знаходиться в області з масовими числами А=140-160 (рідкісноземельні).

Всередині важких ядер утворюються - частинки, кожна з яких складається з двох протонів і двох нейтронів. Відок­ремленню цих чотирьох нуклонів сприяє властивість насичення ядерних сил. Можливість - розпаду викликана тим, що маса материнського ядра більша від суми мас дочірнього ядра і - частинки.

.

Отже, при - розпаді виділяється енергія

.

Енергія - розпаду виділяється у вигляді кінетичної енергії продуктів розпаду: - частинки і дочірнього ядра. Кінетична енергія між ними розподіляється обернено пропорційно до їх маси, тому практично всю енергію розпаду отри­мує - частинка. Довжини пробігів - частинок мало від­різняються від деякої величини , що є експериментальним значенням пробігу -частинок. Проходячи через речовину, - частинка витрачає свою енергію на не­пружні зіткнення з атомами, переважно на їх іонізацію. Очевидно, що довжина пробігу - частинки повинна залежати від її початкової енергії. Дослідним шляхом Гейгер знайшов емпіричну формулу, яка пов’язує початкову швидкість - частинки з її пробігом у повітрі при :

, ,

де b – деяка стала.

Г. Гейгер і Дж. Неттол на підставі аналізу численних дослідів установили співвідношення, яке називають законом Гейгера-Неттола:

чим менший період піврозпаду або більша стала розпаду радіоактивного елементу, тим більший пробіг - частинок, які він випускає.

Закон Гейгера-Неттола записують формулою

або ,

– емпіричні константи.

- розпадом називається процес самочинного перетворення нестабільного ядра в ядро-ізобар із зарядом, який відмінний на , за рахунок випускання електрона (позитрона) або захоплення електрона.

Період піврозпаду - радіоактивних ядер змінюється від до років. Енергія - розпаду знаходиться в межах від (для ) до (для ).

- випромінювання відхиляється електричними і магнітними полями; його іонізуюча здатність значно менша (приблизно на два порядки), а проникна здатність значно більша (поглинається шаром алюмінію 2 мм), ніж у - частинок. - випромінювання – це потік швидких електронів.

Терміном b - розпад називають три типи ядерних перетворень: електронний - розпад, позитронний - розпад, а також електронне захоплення ( або - захоплення).

Явище електронного - розпаду відбувається за правилом зміщення

і супроводжується випромінюванням елек­трона. Електрони, що випромінюються в процесі - розпаду, мають широкий спектр енергій від нуля до деякого максимального значення (рис. 341).

При розпаді кількість нуклонів в ядрі не змінюється. Однак, якщо з ядра випромінюється електрон, який має спін , то спін ядра повинен змінитися на . Таке неузгодження спіну ядра до і після розпаду, а також наявність суцільного
енергетичного спектра випромінюваних електронів привели В. Паулі до гіпотези (1931 р.) про те, що при - розпаді разом з електроном випускається ще одна нейтральна частинка – нейтрино. Нейтрино має нульовий заряд, спін і нульову масу спокою. Нейтрино позначають .

Проте виявилось, що при - розпаді випускається не нейтрино, а антинейтрино, (античастинка за відношенням до нейтрино, яка позначається ).

Гіпотеза про існування нейтрино дала змогу Е. Фермі створити теорію - розпаду (1934), а через 20 років (1956 р.) нейтрино було виявлено експериментально. Такі довгі пошуки нейтрино пов’язані з відсутністю у цієї частинки заряду та маси спокою, а також тим, що іонізуюча здатність нейтрино надзвичайно мала (один акт іонізації припадає на пробіг 500 км в повітрі), а проникна здатність – дуже висока (пробіг нейтрино з енергією 1 МеВ в свинцю порядку м).

Для експериментального виявлення нейтрино використовували метод, який ґрунтується на тому, що в ядерних реакціях виконується закон збереження імпульсу.

Введення нейтрино дозволило пояснити не лише збереження спіна ядра, а й неперервність енергетичного спектра випромінюваних електронів. Суцільний спектр - частинок зумовлений розподілом енергії між електронами і антинейтрино, причому сума енергій обох частинок становить .

- випромінювання не відхиляється електричними і магнітними полями, володіє відносно слабкою іонізуючою і надзвичайно великою проникною здатністю (про­ходить крізь шар свинцю завтовшки 5 см), дифрагує на кристалах. - випромінювання – це короткохвильове елек­тромагнітне випромінювання з дуже малою довжиною хвилі і внаслідок цього – яскраво вираженими корпускулярними властивостями.

Експериментально встановлено, що - випромінювання не є самостійним видом радіоактивності, а лише супроводжує - та - розпади; виникає також під час ядерних реакцій, гальмування заряджених частинок, їх розпаду та ін. Встановлено, що - випромінювання не викликає зміни заряду і масового числа ядер, воно випускається дочірнім ядром, яке в момент свого утворення перебуває у збудженому стані.

Повертаючись в основний стан,
збуджене ядро може пройти через ряд проміжних станів, тому - випромінювання одного і того самого радіоактивного ізотопу може містити кілька груп -кван­тів, що відрізняються одна від одної своєю енергією. Отже, спектр - випромінювання дискретний.

Ядро, яке знаходиться у збудженому стані, може передати енергію Е при переході в основний стан одному з електронів атома (без випускання - кванта). При цьому випромінюється електрон конверсії, а саме явище називається внутрішньою конверсією. Якщо енергія збудженого ядра виділяється у вигляді - кванта, то його частота визначається з . Якщо випромінюються електрони конверсії, то їх енергія буде , де - робота виходу електронів з відповідних електронних оболонок. Вакантні місця, що виникли внаслідок випромінювання елек­тронів конверсії, будуть заповнюватись електронами з верхніх оболонок. Тому внутрішня конверсія завжди супроводжується характеристичним рентгенівським випромінюванням.





Дата публикования: 2014-11-04; Прочитано: 797 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.018 с)...