Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Измерительный детектор. Детектор (рис. 8.1, а) измеряет действующее значение переменного сигнала с частотами более 500 кГц. Малое падение напряжения на базо-эмиттерном переходе в транзисторе позволяет измерять сигналы с амплитудой от 50 мВ. Входное сопротивление схемы для положительной полуволны сигнала больше 100 Ом, а для отрицательной полуволны — более 2 кОм. На рис. 8.1,6 проиллюстрирована зависимость показаний измерительного прибора от входного сигнала.
Рис. 8.1
Детектор с большим динамическим диапазоном. Детектор (рис. 8.2) осуществляет преобразование входных сигналов с амплитудами от единиц милливольт до 5 В. Кроме детектирования схема осуществляет усиление преобразованного сигнала. Регулировка усиления выполняется с помощью резистора R2. Коэффициент усиления может меняться от единицы до нескольких тысяч.
При действии на входе сигнала положительной полярности на выходе ОУ DA2 формируется сигнал также положительной полярности, причем диод VD4 будет закрыт, а диод VD3 открывается и к выходу подключается резистор R2. С этого резистора на инвертирующий вход ОУ DA2 подается сигнал ООС. Отрицательная полярность входного сигнала проходит через усилитель DA2 и открывает диод VD4. По сигналу отрицательной полярности ОУ работает в режиме повторителя сигнала. Через резистор R2 отрицательный сигнал поступает на вход ОУ DA1. На его выходе формируется сигнал положительной полярности, который проходит через диод VD2 на выход схемы. Коэффициент передачи для этой полуволны входного сигнала также устанавливаемся резистором R2. В детекторе можно применить различные типы интегральных микросхем.
Чувствительный детектор. Детектор (рис. 8.3, а) имеет ччвст-вительность 0,2 мВ. При этом сигнале постоянная составляющая на входе равна 3 мВ. Передаточная функция детектора показана на графике рис. 8.3,6. Коэффициент усиления детектора меняется с амплитудой входного сигнала. Для сигнала более 10 мВ коэффициент усиления превышает 103. Эти характеристики детектора получаются за счет того, что транзистор VT2, который детектирует сигнал, находится под плавающим пороювым напряжением. При отсутствии сигнала постоянное напряжение коллектор — база транзистора VT1 соответствует напряжению, которое открывает VT2, и равно примерно 0,6 В. Входной сигнал, усиленный транзистором VT1, управляет работой второго транзистора. Положительная полуволна входного сигнала закрывает транзистор VT2, а отрицательная полуволна открывает. Выходной сигнал транзистора VT2 поступает в базу следующего транзистора, который уменьшает выходное сопротивление детектора и увеличивает его чувствительность. Для создания смещения на транзисторе VT3 служит резистор R4. С помощью резистора R6 компе нрчется коллекторный ток транзистора VT3 при отсутствии входного сигнала. На графике рис. 8.3, б приведена зависимость постоянного выходного напряжения от напряжения на входе.
Рис. 8.2
Детектор на ОУ. Детектор на ОУ (рис. 8.4. а) обеспечивает эквивалентное уменьшение прямого паления напряжения на выпрямительных диодах до 1000 раз. За счет этого достигается точное соответствие между амплитудой входного переменного напряжения и выходным постоянным напряжением. Эта схем? обеспечивает детектирование сигналов с амплитудой в несколько милливольт Однако при малых уровнях входного сигнала точность схемы ухудшается, что связано с влиянием ограниченного усиления, наличием смещения и его температурного дрейфа и т. п. на выходные характеристики де1сктора. Kpove того, сказывается разброс прямою падения напряжения на диодах. В некоторой степени влияние этих причин можно уменьшить, если применить сднополупернодное выпрямление (рис. 8.4,6). Постоянный уровень на выходе интегральной микросхемы можно скомпенсировать подстройкой сопротивления резистора R2 или балансировкой ОУ (см. гл. 1). Детекторы работают на частотах не выше 10 кГц.
Рис. 8.3
Рис. 8.4
Детектор с ограниченной полосой частот. Схема детектора (рис. 8.5) обеспечивает детектирование сигналов с малой амплитудой в частотном диапазоне от 3 до 15 кГц. По постоянному току ОУ имеет коэффициент усиления, равный 2, а по переменному сигналу — 100. Полоса пропускания ОУ ограничена емкостью конденсаторов С1 и С2, что способствует уменьшению шумового сигнала на выходе. Кроме того, из-за малого усиления по постоянному току снижены температурные и временные дрейфы ОУ.
Двухполупериодный детектор. Детектирование осуществляется детектором на ОУ DAJ, который разделяет положительные и отрицательные полуволны входного сигнала (рис. 8.6). Поскольку сопротивления открытых диодов разные, то необходим подбор резистора R3, которым добиваются равенства сигналов на входах усилителя DA2. Второй усилитель объединяет полуволны входного сигнала и усиливает их в 10 раз. На выходе схемы присутствует сигнал положительной полярности. Схема осуществляет детектирование сигналов от 10 мВ при 1 В на выходе. Чувствительность детектора можно повысить, если увеличить коэффициент усиления обоих усилителей, однако при этом уменьшается верхняя граничная частота детектора. Частотный диапазон детектора определяется частотными свойствами используемых ОУ. Интегральные микросхемы К140УД1 позволяют получить граничную частоту свыше 1 МГц, а микросхема К153УД1 — 100 кГц.
Дата публикования: 2014-11-04; Прочитано: 2754 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!