Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Уравнение гармонического колебательного движения



Пусть на некоторое тело массы “m” действует квазиупругая сила , под действием которой тело приобретает ускорение “a”, тогда по II-закону Ньютона и, следовательно (пример, колебание шарика, подвешенного к пружинке). Здесь движение (колебательный процесс) происходит вдоль оси “x”.

Далее ; и ; тогда или .

Колебательный процесс возможен, если коэффициент при “x” положителен, представим его в виде (здесь w0 – вещественная величина). Тогда получим:

– дифференциальное уравнение гармонического колебания.

Таким образом, движение шарика на пружинке под действием силы описывается линейным однородным дифференциальным уравнением 2-го порядка.

Решением такого уравнения является функция вида:

, (8.1)

где А – амплитуда колебаний, величина наибольшего отклонения системы от положения равновесия. Определяется величиной первоначального отклонения (А = const > 0).

(w0t+j) – фаза колебаний. Физический смысл фазы состоит в том, что она определяет смещение колеблющейся точки в любой момент времени. Постоянная j представляет собой значение фазы в момент времени t = 0 и называется начальной фазой колебания. Из уравнения следует, что фазам, отличающимся на величину, кратную 2p, соответствуют одинаковые смещения.

Так как смещение системы при колебательном движении представляет периодическую функцию от времени, то и скорость и ускорение такой системы будут также в точности повторяться через равные промежутки времени T, за который фаза колебаний получит приращение, кратное 2p. Этот промежуток времени T называется периодом колебаний (или иначе T – это время, за которое совершается полный цикл колебаний).

(8.2)

С учетом получим

. (8.3)

Из формулы видно, что период колебаний зависит только от свойств самой системы.

Для описания колебательного периодического движения вводится еще несколько величин:

а) n – частота колебаний – это величина численно равная числу колебаний в единицу времени. . За единицу частоту (1Гц) принимают частоту такого колебания, период которого равен 1с.

б) w0 = 2pn – круговая или циклическая частота (w0 – число колебаний за 2p секунд).

Для колебательного процесса смещение, скорость и ускорение можно представить как аналитически:

1. .

2. .

3. .


так и графически (рис. 8.2).





Дата публикования: 2014-11-04; Прочитано: 577 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...