![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Работа за период: Aпер.=(F02bw2T)/((w20-w2)+4w2b2)
Из-за потери энергии на трение собственные колебания постепенно затухают. Если к осциллятору подводить энергию от источника внешней гармонической силы, -то он начнет колебаться с частотой этой силы, которая вообще говоря, отличается от собственной частоты осциллятора.
Однако можно создать устройства, в которых осциллятор сам регулирует подвод энергии из внешнего источника таким образом, чтобы компенсировать потери энергии на трение. За период колебаний из внешнего источника энергия, приобретаемая осциллятором, равна энергии, затрачиваемой на преодоление сил трения. В результате осциллятор совершает незатухающие колебания. Такие самоподдерживающиеся колебания называются автококлебаниями. Е сли трение невелико, то за один период в систему поступает лишь небольшая доля полной энергии осциллятора. В этом случае автоколебания с очень большой точностью являются гармоническими и их частота очень близка к частоте собственных колебаний. Если же силы трения велики, то за один период в систему подводится значительная часть полной энергии осциллятора и поэтому колебания сильно отличаются от гармонических, хотя и являются периодическими. Период этих колебаний не совпадает с периодом собственных колебаний осциллятора.
Автоколебания маятника. Рассмотрим колебания маятника, подвешенного на оси во вращающейся втулке (Матвеев рис. 156 305 стр), и превращение его энергии в различных случаях. Вращающаяся втулка в результате скольжения относительно оси совершает работу на преодоление сил трения. Источником энергии, превращенной во внутреннюю, является машина, приводящая во вращение втулку. В тот полупериод колебаний маятника, когда направления вращения оси маятника и втулки совпадают, силы трения совпадают по направлению с движением точек поверхности оси. Поэтому эти силы вызывают усиление колебаний маятника. С другой стороны, энергия, превратившаяся во внутреннюю, за врмя полупериода колебаний в сравнении со случаем покоящегося маятника уменьшаетс, я ввиду того, что относительное перемещение трущихся поверхностей (внешняя поверхность оси и внутренняя поверхность втулки) уменьшается. Поэтому лишь часть энергии от машины, вращающей втулку, превращается во внутреннюю, а другая часть идет на увеличение энергии колебаний маятника. В другой полупериод колебаний маятника, когда направления вращения его оси и оси втулки противоположны, силы трения действуют против направления движения маятника. Поэтому они тормозят его движение и энергия колебаний маятника превращается во внутреннюю. Энергия от машины, вращающей втулку, в этом случае также полностью превращается во внутреннюю. Полный результат превращений энергии в течение периода колебаний определяется характером зависимости сил трения от скорости. Если силы трения не зависят от скорости, то энергия, приобретаемая маятником в полупериоде колебаний, когда направления вращения его оси и вала совпадают, равна энергии, теряемой им на работу против сил трения в другом полупериоде. В этом случае вращение втулки не вносит каких-либо изменений в колебания маятника в сравнении со случаем невращающейся втулки. Если сила трения увеличивается с возрастанием скорости, то энергия, приобретаемая маятником за полупериод колебаний, когда направления вращения его оси и вала совпадают, меньше энергии, теряемой им на работу против сил трения в другом полупериоде, поскольку во втором полупериоде относительные скорости больше, а следовательно, и силы трения больше, чем в первом полупериоде. В этом случае вращение втулки увеличивает затухание колебаний маятника.
Параметрическое возбуждение колебаний. Свойства колеблющихся систем описываются величинами, называемыми параметрами. Например, математический маятник характеризуется одним параметром — его длиной. При изменении этого параметра изменяются колебательные свойства маятника, а именно частота собственных колебаний. Если этот параметр изменять в определенном такте с колебаниями, то можно сообщить маятнику энергию и тем самым увеличить амплитуду его колебаний либо просто поддерживать колебания в незатухающем режиме. Такое возбуждение и поддержание колебаний называется параметрическим.
Хорошо известным примером параметрического возбуждения и поддерживания колебаний является качание на качелях. Когда качели находятся в верхней точке, качающийся на них приседает, а когда качели проходят нижнюю точку, он снова выпрямляется. В результате приседания в верхних точках совершается меньшая по модулю работа, чем работа при подъеме в нижней точке. Разность работ, по закону сохранения, равна разности энергий качаний, и качели раскачиваются. Если эта энергия затрачивается полностью на работу силы трения, то качания поддерживаются в незатухающем режиме.
![]() |
Билет 19.
Вопрос 1.
Связь момента импульса твёрдоготела с угловой скоростью еговращения. Тензор инерции. Главные и центральные оси инерции. Оси свободного вращения.
Момент импульса. Тензор инерции. Момент импульса тела относительно неподвижной точки – важнейшее понятие в динамике вращательного движения твердого тела. Он определяется так же, как и для системы материальных точек:
Здесь Dpi=mivi – импульс элементарной массы dmi в лабораторной системе XYZ, а ri – радиус-вектор массы dmi с началом в той неподвижной точке, относительно которой вычисляется момент импульса тела. С учетом постоянства расстояний между точками абсолютно твердого тела вектор момента импульса L удается связать с вектором угловой скорости w.Рассмотрим, к примеру, две одинаковые точечные массы m, укрепленные на концах невесомого стержня АВ (рис. 2.3). Стержень с массами вращается с угловой скоростью w вокруг вертикальной оси, проходящей через середину стержня и перпендикулярной ему. В этом случае:
![]() |
Существенно, что в этом примере век тор L направлен так же, как и w. К сожалению, так бывает не всегда. В этом можно убедиться на примере, показанном на рис. 2.4. Получим выражение для L в случае твердого тела произвольной формы, закрепленного в некоторой точке О. Пусть ri – радиус-вектор элементарной массы mi твердого тела, а –угловая скорость. Тогда:
Векторы ri, и L можно проектировать как на оси лабораторной системы XYZ, так и на оси системы xyz, жестко связанной с твердым телом (поскольку точка О неподвижна, начала обеих систем можно совместить). Преимущество системы xyz заключается в том, что в ней проекции r i являются постоянными величинами (в системе XYZ они зависят от времени), и выражения для компонент L оказываются проще.
ываются центробежными моментами инерции. Если Jxy=Jyx, Jxz=Jzx, Jzy=Jyz, то тензор наз. симметричным.
Если оси Ox, Oy, Oz совместить с главными осями инерции, то тензор инарциипримет дигональный вид. Величины Jxx=Jx, Jyy=Jy, Jxx=Jz в этом случае наз. главными моментами инрции тела, причём: Lx=Jxwx и т. д. Эти оси также называются главными осями тензора инерции. Они жестко связаны с телом.
Направление главных осей тела часто можно определить, пользуюсь соображениями симметрии. Так, например, главные оси однородного прямоугольного параллелепипеда параллельны его рёбрам. К телам такого рода относится, например цилиндр.
Оси свободного вращения. Вращательное движение – это такое, при котором две точки тела остаются всё время неподвижными. Прямая, проходящая через эти точки, называется осью вращения. Все точки твердого тела, лежащие на оси вращения, неподвижны. Другие точки твердого тела движутся по окружностям в плоскостях, перпендикулярных оси вращения. Центры этих окружностей лежат на оси вращения. Вращательное двизение твердого тела является плоским.
Вопрос 2.
Дата публикования: 2015-11-01; Прочитано: 488 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!