![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Рассмотрим вначале случай плоской деформации (рис. 4). Пусть плоский элемент MNPQ перемещается в пределах плоскости и деформируется (изменяет форму и размеры). Координаты точек элемента до и после деформации отмечены на рисунке.
Рис.4. Плоская деформация.
По определению относительная линейная деформация в точке М в направлении оси Ох равна
Из рис. 4 следует
Учитывая, что MN=dx, получим
В случае малых деформаций, когда ,
, можно пренебречь квадратичными слагаемыми. С учетом приближенного соотношения
справедливого при x <<1, окончательно для малой деформации получим
Угловая деформация определяется как сумма углов
и
(4). В случае малых деформаций
Для угловой деформации имеем
Проводя аналогичные выкладки в общем случае трехмерной деформации, имеем девять соотношений
![]() | (6) |
связывающих линейные и угловые деформации с перемещениями. Эти соотношения носят название соотношений Коши.
Три линейных и шесть угловых деформаций (6) образуют тензор малых деформаций
![]() | (7) |
Этот тензор полностью определяет деформированное состояние твердого тела. Он обладает теми же свойствами, что и тензор напряжений. Свойство симметрии непосредственно следует из определения угловых деформаций. Главные значения и главные направления, а также экстремальные значения угловых деформаций и соответствующие им направления находятся теми же методами, что и для тензора напряжений.
Инварианты тензора деформаций определяются аналогичными формулами, причем первый инвариант тензора малых деформаций имеет ясный физический смысл. До деформации его объем равен dV0 =dxdydz. Если пренебречь деформациями сдвига, которые изменяют форму, а не объем, то после деформации ребра будут иметь размеры
(рис. 4), а его объем будет равен
.
Относительное изменение объема
в пределах малых деформаций составит
что совпадает с определением первого инварианта. Очевидно, что изменение объема есть физическая величина, не зависящая от выбора системы координат.
Так же, как и тензор напряжений, тензор деформаций можно разложить на шаровой тензор и девиатор. При этом первый инвариант девиатора равен нулю, т. е. девиатор характеризует деформацию тела без изменения его объема.
Дата публикования: 2015-11-01; Прочитано: 484 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!