Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Комплексное сопротивление



ЛЕКЦИЯ 3

КОМПЛЕКСНЫЕ СОПРОТИВЛЕНИЯ И ПРОВОДИМОСТИ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Комплексное сопротивление

Введение комплексного представления токов и напряжений требует определить и сопротивление элементов электрических цепей в комплексной форме - Z.

Хорошо известно, что сопротивление резистора определяется как отношение напряжения на резисторе к току, протекающему через него. Если напряжение и ток представлены в комплексной форме, то:

Но в предыдущей лекции было установлено, что . Поэтому:

(3.1)

Таким образом, видим, что комплексное сопротивление резистора выражается только действительным числом. Оно не вносит фазовых искажений между током и напряжением. Чтобы подчеркнуть этот факт такое сопротивление часто называют активным.

Комплексное сопротивление емкости определяется отношением:

. (3.2)

Видим, что комплексное сопротивление емкости переменному току выражается мнимым числом. Мнимая единица -j физически определяет сдвиг фаз между током и напряжением на 90о. Это хорошо согласуется с ее математическим значением:

Поэтому на емкости напряжение отстает от тока на 90о. Это означает, что сначала растет ток, протекающий через конденсатор, затем, с некоторым отставанием увеличивается заряд и напряжение.

Коэффициент 1/ определяет величину сопротивления в Омах. Он обратно пропорционален частоте, называется емкостным сопротивлением и обозначается ХС, т.е.:

. (3.3)

Комплексное сопротивление индуктивности определяется отношением:

. (3.4)

И в этом случае сопротивление выражается мнимым числом. Но так как это число положительное, то это означает, что на индуктивности напряжение опережает ток на 90о.

Коэффициент wL определяет величину сопротивления в Омах. Он пропорционален частоте, называется индуктивным сопротивлением и обозначается ХL, т.е.:

. (3.5)

Чтобы подчеркнуть тот факт, что сопротивления емкости и индуктивности выражаются мнимыми числами, их называют реактивными сопротивлениями, а конденсатор и индуктивность - реактивными элементами цепи.

Определим теперь комплексное сопротивление электрической цепи, содержащей активные и реактивные элементы, например последовательно включенные R, L и С элементы (рис.3.1). Такая цепь представляет замкнутый

контур, поэтому для нее справедлив второй закон Кирхгофа:

. (3.6)

В последнем выражении проведем замену символов мгновенных напряжений и ЭДС на их комплексные изображения по правилам, определенным в лекции 1.2. Такой прием получил название символического метода. Так как ток, протекающий через все элементы последовательной цепи одинаков, то (3.6) приходит к виду:

Преобразуем это выражение к виду:

.

По определению выражение в правой части последнего равенства есть ни что иное, как комплексное сопротивление цепи рис.3.1, т.е.:

(3.7)

где R - действительная часть или активное сопротивление цепи.

- мнимая часть или реактивное сопротивление цепи.

Выражение (3.7) представляет комплексное сопротивление в алгебраической форме. Соотношения между составляющими комплексного сопротивления находятся в полном соответствии с соотношениями для комплексного представления тока. Но для большей наглядности вводится

понятие треугольника сопротивления (рис.3.2).

В треугольнике - гипотенуза определяется модулем комплексного сопротивления Z, причем:

. (3.8)

Прилежащий к острому углу катет – активным сопротивлением цепи R, причем:

(3.9)

Противолежащий катет - реактивным сопротивлением Х, причем:

(3.10)

Угол определяет сдвиг фаз между током и напряжением, который вносится комплексным сопротивлением цепи, причем:

. (3.11)

Учитывая выражения (3.8) ¸ (3.11), легко перейти от алгебраической к тригонометрической форме комплексного сопротивления:

Z = Z (3.12)

a применив формулу Эйлера получить показательную форму:

Z = Z (3.13)

Теперь можно записать закон Ома для участка цепи без источника ЭДС в комплексном изображении:

(3.14)

Выражение (3.14) показывает, что в цепях переменного тока модуль тока определяется отношением модуля напряжения (его амплитудного значения) к модулю комплексного сопротивления, а фаза тока определяется разностью фаз напряжения и комплексного сопротивления. Отсюда вытекает еще одно полезное для практики выражение:

. (3.15)





Дата публикования: 2015-11-01; Прочитано: 231 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.056 с)...