Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Комплекс Гольджи



В железах внутренней секреции, например, в поджелудочной железе, некоторые пузырьки, отделяясь от ЭПС, уплощаются, сливаются с другими пузырьками, накладываются друг на друга, как блины в стопке, образуя комплекс Гольджи (КГ). Состоит он из нескольких структурных элементов – цистерн, пузырьков и трубочек (рис. 9). Все эти элементы образованы однослойной мембраной жидкостно-мозаичного типа. В цистернах происходит «созревание» содержимого пузырьков. Последние отшнуровываются от комплекса и передвигаются в цитозоле по микротрубочкам, фибриллам и филаментам. Однако основной путь пузырьков – движение к плазматической мембране. Сливаясь с ней, пузырьки опорожняют своё содержимое с пищеварительными ферментами в межклеточное пространство (рис. 10). Из него ферменты попадают в проток и изливаются в кишечник. Процесс выведения при помощи пузырьков секрета КГ носит название экзоцитоз.

1

2

ЭПС

3 4 5

Рис. 9. Срез комплекса Гольджи: 1 – ядро; 2 – ядрышко; 3 – пузырьки, образующиеся в КГ; 4 – цистерны КГ; 5 – трубочка.

1

4

Мембрана

 
 


2

Рис. 10. Формирование цистерн КГ(г) из пузырьков:

1 – ядро; 2 – ядрышко; 3 – пузырьки, образующиеся в КТ; 4 – цистерны КГ; 5 – трубочка.

Следует отметить, что экзоцитоз в клетке часто совмещён с другим важным клеточным процессом – строительством или обновлением плазматической мембраны. Суть его в том, что пузырёк, состоящий из однослойной жидкостно-мозаичной мембраны, подойдя к мембране, разрывается, разрывая одновременно и мембрану. После выхода содержимого пузырька его края сливаются с краями бреши в мембране, и разрыв «затягивается». Другой путь характерен для пузырьков, из которых в дальнейшем формируются лизосомы. Эти пузырьки, перемещаясь по направляющим филаментам, распределяются по всей цитоплазме клетки.

Практически в КГ происходит перераспределение белков, синтезированных на рибосомах шероховатой ЭПС и доставленной по каналам ЭПС в КГ, часть из них идёт из КГ на экспорт, часть остаётся для нужд клетки (например, концентрируется в лизосомах). Процесс точного распределения белков имеет сложный механизм, и при его сбоях могут пострадать не только функции пищеварения, но и все функции, связанные с лизосомами. Некоторые авторы очень точно подметили, что КГ в клетке является «центральным железнодорожным вокзалом», где происходит перераспределение потока пассажиров-белков.

Некоторые микротрубочки слепо заканчиваются.

В КГ осуществляется модификация продуктов, поступающих из ЭПС:

1. Накопление поступающих продуктов.

2. Обезвоживание их.

3. Необходимая химическая перестройка (созревание).

Ранее мы отмечали, что в КГ происходит формирование пищеварительных секретов и лизосом. Кроме этих функций, в органоиде синтезируются полисахариды и одни из основных участников иммунных реакций в организме - иммуноглобулины.

И, наконец, КГ принимает активное участие в построении и обновлении плазматической мембран. Изливаясь через плазмалемму, пузырьки способны интегрировать в неё свою мембрану. Для строительства мембран используются вещества (рис. 11), синтезированные в ЭПС и "созревшие" на мембранах цистерн КГ.

 
 

Экзоцитоз и образование

мембраны клетки из

мембраны пузырька.

Клетка


Пузырёк

из КГ

Ядро клетки

Комплекс Гольджи

Рис. 11 Схема формирования фрагмента плазматической мембраны из мембраны пузырька КГ (масштабы не соблюдены).

Функция КГ:

· транспортная (образовавшиеся пузырьки транспортируют ферменты наружу или для собственного использования),

· формирует лизосомы,

· образующая (в КГ образуются иммуноглобулины, сложные сахара, мукопротеиды и т.д.),

· строительная: а) мембрана пузырьков КГ может встраиваться в плазматическую мембрану; б) на строительство мембран клетки идут соединения, синтезированные в мембране цистерн,

· разделительную (делит клетку на отсеки).

Лизосомы

Лизосомы имеют вид небольших округлых пузырьков, встречаются во всех частях цитоплазмы, от которой отделены однослойной мембраной жидкостно-мозаичного типа. Внутреннее содержимое однородно и состоит из большого количества самых разнообразных веществ. Наиболее значимые из них – ферменты (около 40 - 60), расщепляют практически все природные полимерные органические соединения, попавшие внутрь лизосом. Внутри лизосом рН 4,5 - 5,0. При таких значениях ферменты находятся в активном состоянии. Если же рН близка к нейтральной, характерной для цитоплазмы, эти ферменты обладают низкой активностью. Это один из механизмов защиты клеток от самопереваривания в том случае, если ферменты попадают в цитоплазму, например, при разрыве лизосом. На внешней стороне мембраны имеется большое количество самых разнообразных рецепторов, которые способствуют соединению лизосом с эндоцитозными пузырьками. Следует отметить важное свойство лизосом – целенаправленное движение в сторону объекта действия. Когда происходит фагоцитоз, лизосомы двигаются в сторону фагосом. Отмечено их движение к разрушенным органоидам (например, митохондриям). Как мы писали ранее, направленное движение лизосом осуществляется с помощью микротрубочек. Разрушение микротрубочек приводит к прекращению образования фаголизосом. Фагоцит практически теряет способность переваривать болезнетворные микроорганизмы, находящиеся в крови (фагоцитоз). Это приводит к тяжёлому течению инфекционных заболеваний.

В определённых условиях мембрана лизосом способна пропускать внутрь высокомолекулярные органические вещества гиалоплазмы (например, белки, липиды, полисахариды) (рис. 12. (4,4а), где они расщепляются до элементарных органических соединений (аминокислоты, моносахара, жирные кислоты, глицерин). Затем эти соединения выходят из лизосом и идут на нужды клетки. В некоторых случаях лизосомы могут «захватить», а затем «переварить» осколки органоидов (рис. 12. (3,3а)) и повреждённые или устаревшие компоненты клетки (мембраны, включения). При голодании жизнедеятельность клеток поддерживается за счёт переваривания в лизосомах части цитоплазматических структур и использования конечных продуктов. Такое эндогенное питание характерно для многих многоклеточных.

Образующиеся в процессе эндоцитоза (фагоцитоз и пиноцитоз) эндоцитозные пузырьки – пиноцитозные пузырьки (рис. 12. (1,1а) и фагосомы (рис. 12. (2,2а)) – также сливаются с лизосомой, формируя фаголизосому. Их внутреннее содержимое – микроорганизмы, органические вещества и т.д. расщепляются ферментами лизосом до элементар-

Микроорганизмы

       
   
 
 


Растворённые

органические 2 3

вещества

2а 3а

4

1

1а 4а

           
 
 
   
   
 


Белки, жиры Лизосома Фрагменты

углеводы митохондрий

Рис. 12. Функции лизосом:

1, 1а – утилизация органических веществ гиалоплазмы; 2, 2а – утилизация содержимого пиноцитозных пузырьков; 3, 3а – утилизация содержимого фагоцитозных пузырьков; 4, 4а – ферментативное расщепление поврежденных митохондрий. 3а – фагосомы.

ных органических соединений, которые после выхода в цитоплазму становятся участниками клеточного метаболизма. Переваривание биогенных макромолекул внутри лизосом может идти в ряде клеток не до конца. В этом случае в полости лизосомы накапливаются непереваренные продукты. Такая лизосома называется остаточным тельцем. Там же откладываются пигментные вещества. У человека при старении организма в остаточных тельцах клеток мозга, печени и в мышечных волокнах накапливается "пигмент старения" - липофусцин.

Если вышесказанное можно условно охарактеризовать как действие лизосом на уровне клетки, то другая сторона деятельности этих органоидов проявляется на уровне целого организма, его систем и органов. Прежде всего это касается удаления отмирающих в процессе эмбриогенеза органов (например хвост у головастика), при дифференцировке клеток некоторых тканей (замена хряща костью) и т.д.

Учитывая большое значение ферментов лизосом в жизнедеятельности клетки, можно предположить, что любые нарушения их работы могут привести к тяжёлым последствиям. При повреждении гена, контролирующего синтез какого-либо фермента лизосом, у последнего произойдёт нарушение структуры. Это приведёт к тому, что в лизосомах будут накапливаться «непереваренные» продукты. Если в клетке таких лизосом становится слишком много, клетка повреждается и как результат нарушается работа соответствующих органов. Наследственные болезни, развивающиеся по такому сценарию, носят название «лизосомные болезни накопления».

Следует обратить внимание также на участие лизосом в формировании иммунного статуса организма (рис 13). Попадая в организм, антиген (например, токсин микроорганизма) в основном (около 90%) разрушается, что предохраняет клетки от его повреждающего действия. Оставшиеся в крови молекулы антигена поглощаются (пиноцитозом или фагоцитозом) макрофагами или специальными клетками с развитой лизосомальной сис

Бактерия

 
 


Антиген

Макрофаг

Процесс

пинозитоза

 
 


Ядро

 
 


Пиноцитозный

пузырёк

 
 


Лизосома

Пептидные фрагменты антигена

Рис. 13. Формирование в макрофаге пептидных фрагментов антигена

(масштабы не соблюдены).

темой. Пиноцитозный пузырёк или фагосома с антигеном соединяется с лизосомой и ферменты последней, расщепляют антиген на фрагменты, которые обладают большей антигенной активностью и меньшей токсичностью, чем первоначальный микробный антиген. Эти фрагменты в большом количестве выносятся на поверхность клеток, и происходит мощная активация иммунных систем организма. Понятно, что усиление антигенных свойств (на фоне отсутствия токсического эффекта), в результате лизосомальной обработки, значительно ускорит процесс развития защитных иммунных реакций на этот микроорганизм. Процесс расщепления лизосомами антигена на пептидные фрагменты носит название процессинг антигена. Необходимо отметить, что непосредственное участие в этом явлении принимают ЭПС и комплекс Гольджи.

И, наконец, в последнее время широко рассматривается вопрос взаимоотношения лизосом и микроорганизмов, фагоцитированных клеткой. Как мы излагали ранее, слияние фагосомы и лизосомы приводит к перевариванию микроорганизмов в фаголизосоме. Это наиболее благоприятный исход. Однако возможны и другие варианты взаимоотношений. Так, некоторые патогенные (болезнетворные) микроорганизмы при проникновении в клетку внутри фагосомы выделяют вещества, блокирующие слияние лизосом с фагосомой. Это даёт возможность сохраниться им в фагосомах. Однако срок жизни клеток (фагоцитов) с поглощёнными микроорганизмами невелик, они распадаются, выбрасывая в кровь фагосомы с микробами. Вышедшие в кровеносное русло микроорганизмы способны вновь спровоцировать рецидив (возврат) заболевания. Возможен и другой вариант, когда части разрушенного фагоцита, в том числе и фагосомы с микробами, вновь поглощаются другими фагоцитами, снова оставаясь в живом состоянии и в новой клетке. Цикл может повторяться достаточно длительное время. Описан случай заболевания сыпным тифом у пожилого пациента, который ещё юношей-красноармейцем перенёс сыпной тиф, сражаясь в Первой конной армии. Через пятьдесят с лишним лет повторились не только симптомы заболевания – даже бредовые видения возвращали старика в эпоху гражданской войны. Всё дело в том, что возбудители сыпного тифа обладают способностью блокировать процесс соединения фагосом и лизосом.

Функция лизосом:

· пищеварительная (переваривая части цитоплазмы и микроорганизмы, поставляет элементарные органические соединения для нужд клетки),

· утилизационная (очищает цитоплазму от распавшихся частей),

· участвуют в удалении отмирающих клеток и органов,

· защитная (переваривание микроорганизмов, участие в иммунных реакциях организма).

Рибосомы.

Это аппарат синтеза белка в клетке. В рибосому входят две субъединицы – большая и малая. Субъединицы имеют сложную конфигурацию (см. рис. 14) и состоят из белков и рибосомальной РНК (рРНК). Рибосомальная РНК служит своеобразным каркасом, на который крепятся молекулы белка.

Образование рибосом происходит в ядрышке ядра клетки (этот процесс будет рассмотрен ниже). Сформированные большая и малая субъединица выходят через ядерные поры в цитоплазму.

В цитоплазме рибосомы находятся в диссоциированном или диспергированном состоянии, это диссоциированные рибосомы. В таком состоянии они не способны прикрепиться к мембране. Это не рабочее состояние рибосомы. В рабочем состоянии рибосома представляет собой органоид, состоящий из двух скрепленных между собой субъединиц, между которыми проходит нить иРНК. Такие рибосомы могут свободно «плавать» в цитозоле, они называются свободные рибосомы, или прикрепляться к различным мембранам,

 
 


А Б В Г

Рис. 14. Естественная форма малой (А) и большой (Б) субъединицы рибосомы. Целая рибосома (В). Схематическое изображение рибосомы (Г)

например к мембране ЭПС. На мембране рибосома чаще всего располагается не в одиночку, а ансамблем. В ансамбле может быть разное количество рибосом, но все они соединены одной нитью иРНК. Это делает работу рибосом очень эффективной. В то время как очередная рибосома заканчивает синтез белка и сходит с иРНК, другие этот синтез продолжают, находясь в различных местах молекулы РНК. Ансамбль таких рибосом на зывается полисомой (рис. 15).

Окончание синтеза белка Начало синтеза белка

Рис. 15. Схема синтеза белка полисомой.

На рисунке полисома состоит из пяти разных рибосом.

Обычно на мембранах шероховатой ЭПС синтезируются белки на экспорт, а в гиалоплазме – на нужды клетки. Если при заболевании обнаруживается отсоединение рибосом от мембран и переход их в гиалоплазму, то это можно рассматривать как защитную реакцию – с одной стороны, клетки сокращают экспорт белка и увеличивает синтез белка на внутренние нужды. С другой стороны, такое отсоединение рибосом свидетельствует о наступающем энергодифеците клетки, так как прикрепление и удержание рибосом на мембранах требует затраты энергии, основным поставщиком которой в клетке является АТФ. Недостаток АТФ закономерно приводит не только к отсоединению рибосом от мембраны, но и неспособности свободных рибосом прикрепиться к мембране. Это приводит к выключению из молекулярного хозяйства клетки эффективного генератора белка – шероховатой ЭПС. Считается, что энергодефицит – это серьёзное нарушение клеточного метаболизма, чаще всего связанное с нарушением в деятельности энергозависимых процессов (например в митохондриях).

В рибосоме имеются три различных участка, с которыми связывается РНК - один для матричной, или информационной РНК (мРНК, или иРНК), и два для транспортной РНК. Первый располагается в месте контакта большой и малой субъединицы. Из двух последних - один участок удерживает молекулу тРНК и формирует связи между аминокислотами (пептидные связи), поэтому его называют Р-центр. Он располагается в малой субъединице. А второй служит для удержания только что прибывшей молекулы тРНК, нагруженной аминокислотой. Его называют А-центром.

Следует подчеркнуть, что при синтезе белка некоторые антибиотики могут блокировать этот процесс (подробнее на этом мы остановимся, когда будем описывать трансляцию).

Митохондрии.

Их называют «энергетическими станциями клетки». У эукариот в процессе гликолиза, цикла Кребса и других биохимических реакций формируется большое количество электронов и протонов. Часть из них участвует в разнообразных биохимических реакциях, другая часть аккумулируется в специальных соединениях. Их несколько. Наиболее важные из них НАДН и НАДФН (никотинамидадениндинуклеотид и никатинамидадениндинуклеотид-фосфат). Эти соединения в форме НАД и НАДФ являются акцепторами – своеобразными «ловушками» электронов и протонов. После присоединения к ним электронов и протонов они превращаются в НАДН и НАДФН и являются уже донорами элементарных частиц. «Отлавливая» их в самых различных частях клетки, они переносят частицы в различные отделы цитоплазмы и, отдавая их на нужды биохимических реакций, обеспечивают бесперебойное течение метаболизма. Эти же соединения поставляют электроны и протоны в митохондрии из цитоплазмы и из матрикса митохондрий, где располагается мощный генератор элементарных частиц – цикл Кребса. НАДН и НАДФН, встраиваясь в цепь переноса электронов (см. далее), передают частицы на синтез АТФ. Из АТФ энергия черпается на все процессы, идущие в клетке с затратой энергии.

Митохондрии имеют две мембраны жидкостно-мозаичного типа. Между ними располагается межмембранное пространство. Внутренняя мембрана имеет складки – кристы (рис. 16). Внутренняя поверхность крист усеяна грибовидными тельцами, имеющими ножку и головку.

В грибовидных тельцах происходит синтез АТФ. В самой толще внутренней мембраны митохондрий располагаются ферментные комплексы, переносящие электроны с НАДН2 на кислород. Эти комплексы называются дыхательной цепью или цепью пере-

Рибосома

А Б С

                   
   
   
 
     
 
   
 
 


1 2 3 4 5 6

Кольцевая ДНК

Рис. 16. Митохондрии:

А – Общая схема организации митохондрий. Б – участок кристы с грибовидными телами:

1 – наружная мембрана митохондрий; 2 – межмембранный матрикс; 3 – внутренняя мембрана; 4 – матрикс; 5 – криста; 6 – грибовидные тельца.

носа электронов. За счёт движения э лектронов по этому комплексу происходит синтез АТФ. АТФ является главным поставщиком энергии для всех клеточных процессов. Митохондрии являются главными потребителями кислорода в организме. Поэтому в первую очередь на недостаток кислорода реагируют митохондрии. Реакция эта однозначна –недостаток кислорода (гипоксия) приводит к набуханию митохондрий, в дальнейшем клетки повреждаются и отмирают.

Различные типы эукариотических клеток отличаются друг от друга как по количеству и форме митохондрий, так и по количеству крист. Содержание органелл в клетке колеблется в пределах 500 – 2000, в зависимости от потребности в энергии. Так активно работающие клетки кишечного эпителия содержат много митохондрий, а в сперматозоидах они формируют сеть, обвивающую жгутик, обеспечивая его энергией для движения. В тканях с высоким уровнем окислительных процессов, например в сердечной мышце количество крист во много раз больше, чем в обычных клетках. В митохондриях сердечной мышцы число их в 3 раза больше, чем в митохондриях печени.

Жизнь митохондрий измеряется днями (5 – 20 дней в различных клетках). Устаревшие митохондрии гибнут, распадаются на фрагменты и утилизируются лизосомами. Взамен формируются новые, которые появляются в результате деления имеющихся митохондрий.

Обычно в матриксе митохондрий располагаются 2 – 10 молекул ДНК. Это кольцевые структуры, кодирующие митохондральные белки. В митохондриях имеется весь аппарат синтеза белка (рибосомы, иРНК, тРНК, аминокислоты, ферменты транскрипции и трансляции). Поэтому в митохондриях осуществляются процессы репликации, транскрипции и трансляции, происходит созревание иРНК – процессинг. Исходя из этого, митохондрии являются полуавтономными единицами.

Существенным моментом в деятельности митохондрий является синтез в них стероидных гормонов и некоторых аминокислот (глутаминовой). Устаревшие митохондрии могут выполнять депонирующую функцию – накапливать продукты экскреции или аккумулировать вредные вещества, попавшие в клетку. Понятно, что в этих случаях митохондрия перестаёт выполнять свою основную функцию.

Функции митохондрий:

· накопление энергии в форме АТФ,

· депонирующая,

· синтетическая (синтез белков, гормонов, аминокислот).





Дата публикования: 2015-11-01; Прочитано: 991 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.018 с)...