![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Математический анализ
Множество-это совокупность объектов любой природы. Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.
Если элемент x принадлежит множеству X, то записывают x ∈ Х (∈ — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В (⊂ — содержится).
Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.
Например, перечислением заданы следующие множества:
§ А={1,2,3,5,7} — множество чисел
§ Х={x1,x2,...,xn} — множество некоторых элементов x1,x2,...,xn
§ N={1,2,...,n} — множество натуральных чисел
§ Z={0,±1,±2,...,±n} — множество целых чисел
Множество (-∞;+∞) называется числовой прямой, а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а.
Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным. Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.
Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.
Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}
Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}
Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}
Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}
2. Метод математической индукции (пример). Неравенство Бернулли.
3. Аксиоматика множества действительных чисел: операция сложения, операция умножения, отношение порядка.
4. Аксиоматика множества действительных чисел: аксиома Архимеда, аксиома Дедекинда.
АРХИМЕДА АКСИОМА
- аксиома, первоначально сформулированная для отрезков, заключающаяся в том, что, отложив достаточное число раз меньший из двух заданных отрезков, всегда можно получить отрезок, превосходящий больший из них. Аналогично А. а. формулируется для площадей, объемов, положительных чисел и т. д. Вообще, для данной величины имеет место А. а., если для любых двух значений этой величины таких, что
, всегда можно найти целое число т, что
; на этом основан процесс последовательного деления в арифметике и геометрии (см. Евклида алгоритм). Значение А. а. выяснилось с полной отчетливостью после того, как в 19 в. было обнаружено существование величин, по отношению к к-рым эта аксиома несправедлива,- т. н. неархимедовых величин
Дедекинда аксиома
одна из аксиом непрерывности (см. Непрерывности аксиомы). Д. а. гласит: если все точки прямой разбиты на два непустых класса, причём все точки первого класса расположены левее всех точек второго, то существует либо самая правая точка первого класса, либо самая левая точка второго
5. Модуль действительного числа и его свойства.
Абсолютной величиной (или модулем) действительного числа х называется неотрицательное число , определяемое соотношением
Свойства модуля. 1. . 2.
. 3. Неравенства
и
равносильны. 4. Модуль суммы двух действительных чисел меньше или равен сумме модулей этих чисел:
Это свойство справедливо для любого конечного числа слагаемых.
5. Модуль разности двух действительных чисел больше или равен разности модулей этих чисел:
. 6. Модуль произведения чисел равен произведению модулей этих чисел:
. Это свойство справедливо для любого конечного числа сомножителей. 7. Модуль частного двух чисел (если делитель отличен от нуля) равен частному модулей этих чисел:
6. Границы числовых множеств. Точные верхние и нижние границы числовых множеств.
7. Действительная функция действительного аргумента: элементарные функции их область определения и график, сложные и неэлементарные функции.
8. Способы задания функций, арифметические действия над функциями.
9. Простая классификация функций действительного аргумента.
10. Предел числовой последовательности и его геометрический смысл.
11. Свойства сходящихся последовательностей: теорема 1. Единственность предела (с доказательством). Теорема 2.
12. Бесконечно малые и бесконечно большие числовые последовательности: определения. Связь между ними.
13. Леммы о бесконечно малых числовых последовательностях. Следствия. Примеры.
14. Теоремы о пределах числовых последовательностей. Следствия.
15. Вычисление пределов числовых последовательностей: правила раскрытия неопределенностей вида,. Вывод. Пример.
16. Предельный переход в неравенствах: Теорема 1. (о сохранении знака предела). Теорема 2 (предельный переход в неравенствах). Теорема 3 (о сжатой последовательности). Теорема Вейерштрасса.
17. Число e (с доказательством). Натуральные логарифмы.
18. Предельные точки множества.
19. Определение предел функции в точке по Коши и его геометрический смысл.
20. Определение предела функции в точке по Гейне. Основные теоремы о пределе функции. Вычисление предела функции в точке: правило раскрытия неопределенности вида Пример.
21. Предел функции по множеству. Односторонние приделы. Замечания.
22. Первый замечательный предел (с доказательством). Следствия.
23. Второй замечательный предел. Замечания. Замечательные пределы, связанные с показательной и логарифмической функциями. Замена переменной под знаком предела. Пример.
24. Непрерывность и точки разрыва функции. Свойства непрерывных функций.
25. Производные простых функций: определение производной функции, геометрический смысл производной функции. Уравнения касательной и нормали к кривой.
26. Основные правила дифференцирования функций. Производные элементарных функций. Пример.
27. Производная сложной функции. Логарифмическое дифференцирование. Производная показательно-степенной функции.
28..Дифференциал функции и его геометрический и механический смысл. Вывод.
29. Основные правила нахождения дифференциала функции. Дифференциал сложной функции. Инвариантность формы дифференциала первого порядка..
30. Производные и дифференциалы высших порядков функции. Механический и геометрический смысл второй производной. Формула Лейбница.
31. Основные теоремы дифференцирования: теорема Ферма, теорема Роля и их геометрический смысл.
32. Основные теоремы дифференцирования: теорема Лагранжа, теорема Коши и их геометрический смысл.
33. Приложения производной: правило Лопиталя для раскрытия неопределенностей вида и, раскрытие неопределенностей вида. Пример.
34. Первообразная функции и неопределенный интеграл. Свойства неопределенного интеграла. Таблица основных интегралов.
35. Методы интегрирования функций: непосредственное интегрирование; метод замены переменной; метод интегрирования по частям.
36. Определение и свойства определенного интеграла.
37. Вычисление определенного интеграла. Формула Ньютона-Лейбница. Методы интегрирования в определенном интеграле: замена переменной, метод интегрирования по частям.
38. Числовые ряды. Сходимость и расходимость числовых рядов. Необходимый признак сходимости рядов.
39. Достаточные признаки сходимости числовых рядов: признак сравнения, предельный признак сравнения.
40. Достаточные признаки сходимости числовых рядов: радикальный признак Коши, признак Даламбера.
Дата публикования: 2015-10-09; Прочитано: 7895 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!