![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
1. ГЛИКОЛИЗ (от греч. glykys-сладкий и lysis - разложение, растворение, распад), анаэробное (без участия О2) негидролитич. расщепление углеводов (гл. обр. глюкозы) в цитоплазме под действием ферментов, сопровождающееся синтезом АТФ и заканчивающееся образованием молочной к-ты (см. рис.). Гликолиз одной молекулы глюкозы м. б. выражен след. ур-нием:
Стадии, в к-рых осуществляются необратимые р-ции (II-IV), играют существ. роль в регуляции скорости гликолиза. Наиб. важный регуляторный фермент-фосфофруктокиназа, катализирующая р-цию III; ее активность ингибируется АТФ, НАДН, лимонной и жирными к-тами, стимулируется АДФ и АМФ. Р-ции II и IV катализируются соотв. гексокиназой и пируваткиназой, активность к-рых регулируется адениловыми нуклеотидами, промежуточными продуктами гликолиза и цикла трикарбоновых к-т. У животных и человека в регуляции гликолиза принимают участие также гормоны.
В условиях недостаточности кислорода гликолиз-единств. процесс, поставляющий энергию для осуществления физиол. ф-ций организма. В аэробных условиях гликолиз-первая стадия окислит. превращения углеводов: в присут. О2 пировиноградная к-та может подвергаться дальше окислит. декарбоксилированию, а образующаяся уксусная к-та в виде СН3С(О)КоА (КоА-остаток кофермента А) полностью окисляться до СО2 и воды в цикле трикарбоновых к-т.
Интенсивный гликолиз происходит в скелетных мышцах, где он поставляет энергию для мышечных сокращений, а также в печени, сердце, мозге животных и человека. В клетках осуществляется тонкая регуляция окислит. и анаэробного обмена. Подавление гликолиза дыханием в присут. О2 (эффект П а с т е р а) обеспечивает клетке Наиб. экономный механизм образования богатых энергией соединений. В тканях, где такой эффект отсутствует (напр., в эмбриональных и опухолевых), гликолиз протекает очень активно. В нек-рых тканях с интенсивным гликолизом наблюдается подавление тканевого дыхания (эффект Крабтри).
Гликолиз-простейшая форма биол. механизма аккумулирования энергии углеводов в АТФ. Считают, что он возник в период, когда в атмосфере Земли не было О2. При энергетически более выгодном аэробном окислении из одной молекулы глюкозы образуется 38 молекул АТФ.
БРОЖЕНИЕ, ферментативное расщепление органических веществ, преимущественно углеводов. Может осуществляться в организме животных, растений и мн. микроорганизмов без участия или с участием О2 (соотв. анаэробное или аэробное брожение).
В результате окислит.-восстановит. р-ций при брожении освобождается энергия (гл. обр. в виде АТФ) и образуются соед., необходимые для жизнедеятельности организма. Нек-рые бактерии, микроскопич. грибы и простейшие растут, используя только ту энергию, к-рая освобождается при брожении. Общий промежут. продукт у мн. видов брожения - пировиноградная к-та СН3С(О)СООН, образование к-рой из углеводов в большинстве случаев протекает таким же путем, как в гликолизе. Нек-рые виды брожения, происходящие анаэробно под действием микроорганизмов, имеют важное практич. значение.
Спиртовое брожение осуществляется обычно с помощью дрожжей рода Saccharomyces и бактерий рода Zimomonas по схеме:
где НАД(Ф)Н и НАД(Ф) - соотв. восстановленная или окисленная формы никотинамидадениндинуклеотида или никотинамидадениндинуклеотидфосфата. Первая стадия процесса катализируется ферментомпируватдекарбоксилазой, вторая - алкогольдегидрогеназой. Этот вид брожения используют для пром. полученияэтанола, а также в виноделии, пивоварении и при подготовке теста в хлебопекарной пром-сти. В присут. О2спиртовое брожение замедляется или прекращается и дрожжи получают энергию для жизнедеятельности в результате дыхания.
Молочнокислое брожение вызывается бактериями родов Lactobacillus и Streptococcus. При гомоферментативном типе брожения молочная к-та образуется непосредственно из пировиноградной в НАД-зависимой р-ции, катализируемой лактатдегидрогеназой. При гетероферментативном брожении метаболизм глюкозы до глицеральдегид-3-фосфата осуществляется по фосфоглюконатному пути по схеме:
где АТФ - аденозинтрифосфат, АДФ - аденозиндифосфат. Затем глицеральдегид-3-фосфат по тому же пути, как вгликолизе, окисляется до молочной к-ты. Образующийся смешанный ангидрид уксусной и фосфорной к-т превращается в уксусную к-ту или восстанавливается до этанола:
Молочнокислое брожение играет важную роль при получении разл. молочных продуктов (кефира, простокваши и др.), квашении овощей, силосовании кормов в с. х-ве; гомоферментативный процесс используют для пром. синтеза молочной к-ты. Пропионовокислое брожение идет под действием пропио-новокислых бактерий:
где SKoA-остаток кофермента A (KoASH), ФАДН и ФАД - соотв. восстановленная и окисленная формы флавинадениндинуклеотида, ~ высокоэргич. связь. Синтез пропионил-КоА катализируется метилмалонил-КоА-карбоксилтрансферазой (кофермент - биотин), а пропионовой к-ты -транстиоэстеразой. Образующийся сукцинил-КоА под действием L-метилмалонил-КоА-мутазы (кофермент - витамин В12) превращается в метилмалонил - КоА, к-рый снова вовлекается в процесс. Параллельно с основными р-циями под действием пируватдегидрогеназы происходит окислит. декарбоксилирование пировиноградной к-ты:
Пропионовокислое брожение используется в молочной пром-сти при изготовлении мн. твердых сыров. Маслянокислое брожение осуществляется под действием спорообразующих бактерий рода Clostridium по схеме:
Синтез ацетил-КоА катализируется комплексом ферментов с участием ферродоксина и тиаминдифосфата (тиаминпирофосфата). Из промежут. продуктов нек-рые маслянокислые бактерии синтезируют бутанол, ацетон иизопропанол (т.н. ацетоно-бутиловое брожение):
В результате деятельности маслянокислых бактерий Clostridium Kluyreri возможен синтез масляной к-ты из этанола и уксусной или пропионовой к-ты. Механизм р-ции связан с окислением этанола до СН3С(О) ~ SKoA, к-рый превращается в масляную к-ту. Капроновая к-та образуется в результате взаимод. бутирил-КоА с ацетил-КоА.
Маслянокислое брожение приводит к порче пищ. продуктов, вспучиванию сыра и банок с консервами. Раньше использовалось для получения масляной к-ты, бутилового спирта и ацетона. Метановое брожение начинается с разложения сложных в-в (напр., целлюлозы) до одно- или двууглеродных молекул (СО2, НСООН, СН3СООН и др.), к-рое осуществляют микроорганизмы, живущие в симбиозе с метанообразующими бактериями. Последние синтезируют метан по схеме:
Восстановление СО2 до группы СН3 происходит с участием тетрагидрофолиевой к-ты (ТГФ), затем группа СН3переносится на витамин В12, где с участием НАДН и АТФ восстанавливается до СН4. В восстановлении др.субстратов ТГФ не участвует.
Метановое брожение в природе происходит в заболоченных водоемах. Используется в пром. и бытовых очистных сооружениях для обезвреживания орг. в-в сточных вод. Образующийся при этом метан (гл. обр. в смеси с СО2) используется как топливо.
При аэробном брожении образующийся из пировиноградной к-ты ацетил-КоА конденсируется со щавелевоуксусной к-той с образованием лимонной, к-рая претерпевает дальнейшие превращения в цикле трикарбоновых к-т. Суммарное ур-ние этого процесса:
Продуктами аэробного брожения могут быть метаболиты цикла трикарбоновых к-т: лимонная, янтарная, фумаровая и др. В норме они не накапливаются, однако имеются штаммы, гл. обр. микромицетов, способные накапливать эти соед. в больших кол-вах. Напр., при лимоннокислом брожении выход продукта может достигать 70%, что обусловлено повыш. активностью в микроорганизме цитратсинтетазы. Интенсивное накопление фумаровой к-ты происходит при функционировании цикла трикарбоновых к-т и глиоксилатного цикла.
Под действием нек-рых аэробных микроорганизмов происходит брожение, при к-ром углеродный скелет субстрата не подвергается изменениям. К такому виду брожения, в частности, относится образование уксусной к-ты из этанола(уксуснокислое брожение) под действием уксуснокислых бактерий:
Как и другие функциональные белки, ферменты делятся на простые и сложные. Простые ферменты — это простые белки, они построены из аминокислот и при гидролизе распадаются только на аминокислоты. Сложные ферменты — это сложные белки, они состоят из простого белка и небелкового компонента. При их гидролизе, помимо свободных аминокислот, освобождается небелковая часть или продукты её распада.
Белковая часть сложного фермента получила название апофермент, небелковая часть — кофактор. Кофакторы могут иметь разную химическую природу и отличаться по прочности связи с апоферментом. В роли кофактора могут выступать ионы различных металлов, а также другие неорганические ионы.
Органические вещества неаминокислотной природы, используемые в роли кофакторов, называются коферментами. Кофермент вместе с апоферментом образуют холофермент.
Кофермент + Апофермент ↔ Холофермент
В некоторых случаях в условиях живой клетки равновесие в этой реакции сильно сдвинуто вправо и кофермент прочно связан со своей белковой частью, они не разделяются при выделении и очистке. Такой кофермент называется простетической группой.
Следует отметить одну отличительную особенность сложных ферментов, заключающуюся в том, что ни кофактор (в том числе кофермент), ни сам по себе апофермент каталитической активностью не обладают и только их объединение в единое целое обеспечивает быстрое протекание химической реакции.
Коферменты относятся к сложным органическим веществам, их молекулы значительно меньше по размеру, чем молекулы ферментов. Коферменты могут проникать через биологические мембраны, нагревание обычно не вызывает изменения их структуры.
8.1.2. Функцией кофермента является участие в катализируемой реакции, причём количество кофермента и его химическое строение внешне остаются неизменными. В действительности кофермент является одним из субстратов ферментативной реакции, т.е. выступает как косубстрат. В ходе реакции кофермент претерпевает химические превращения, в точности противоположные тем, которые происходят в субстрате. Например, в окислительно-восстановительных реакциях молекула субстрата окисляется, а молекула кофермента восстанавливается. При последующих сопряжённых реакциях изменения в коферменте протекают в обратном направлении и он воспроизводится в первоначальной форме.
Таким образом, коферменты могут быть охарактеризованы как переносчики определённых атомов, электронов или химических групп на соответствующий акцептор. Строение апофермента определяет специфичность этой реакции, а строение кофермента – её тип.
Многие коферменты и простетические группы ферментов являются производными витаминов — органических веществ, которые не синтезируются в организме человека и должны поступать в составе пищевых продуктов. Они называются витаминными коферментами. В молекуле такого кофермента активным компонентом, соединяющимся с переносимой группой, служит именно витамин. Остальная часть молекулы кофермента обеспечивает специфическое связывание с апоферментом в строго определённой ориентации. Заболевания, возникающие у людей при недостатке витаминов в пище, являются следствием нарушений обмена веществ, в результате снижения концентрации коферментов специфических ферментативных реакций.
Важнейшими из витаминных коферментов являются:
Тиаминдифосфат (ТДФ) является производным витамина В1; участвует в реакциях окислительного декарбоксилирования пировиноградной и α-кетоглутаровой кислот.
Пиридоксальфосфат является производным витамина В6; он принимает участие в реакциях трансаминирования аминокислот. Коферменты НАД+ (никотинамидадениндинуклеотид) и НАДФ+ (никотинамидадениндинуклеотидфосфат) содержат в своём составе витамин РР и принимают участие в окислительно-восстановительных реакциях. Восстановленные формы этого кофермента обозначается НАДН и НАДФН соответственно. Формула кофермента НАД+ представлена на рисунке; структура НАДФ+отличается наличием дополнительной фосфатной группы во втором положении рибозы аденилового нуклеотида. Коферменты ФАД (флавинадениндинуклеотид) и ФМН (флавинмононуклеотид) содержат в своём составе витамин В2 и принимают участие в окислительно-восстановительных реакциях. Восстановленные формы этого кофермента обозначается ФАДН2 и ФМНН2 соответственно. Коэнзим А (КоА-SH) является производным витамина В3 (пантотеновой кислоты) и участвует в реакциях переноса остатков жирных кислот (реакциях ацилирования). 5,6,7,8-Тетрагидрофолиевая кислота (ТГФК) является производным витамина Вс (фолиевой кислоты) и участвует в реакциях переноса одноуглеродных групп: метильной (СН3-), метиленовой (-СН2-), метенильной (-СН=), формильной (-СОН) и некоторых других. Биотин (витамин Н) участвует в активации СО2 и переносе карбоксильных групп (реакциях карбоксилирования).
К невитаминным коферментам относятся в первую очередь пептидные и нуклеотидные коферменты.
Глутатион – кофермент пептидной природы. По химическому строению это трипептид γ–глутамил-цистеинил-глицин. Его реакционная способность определяется SH-группой цистеина, которая легко вступает в окислительно-восстановительные реакции. Поэтому глутатион может находиться в восстановленной (Г-SH) и окисленной (Г-S-S-Г) форме. В клетке глутатион присутствует преимущественно в восстановленной форме. Его основная функция состоит в том, что глутатион защищает SH-группы ферментов от окисления и образует тиолы из дисульфидов.
Аденозинтрифосфат (АТФ) - кофермент нуклеотидной природы. В его состав входит пуриновое основание аденин, углевод рибоза и три остатка фосфорной кислоты. Это соединение содержит богатые энергией (макроэргические) фосфатные связи и может принимать участие в реакциях синтеза сложных веществ, а также служить донором фосфатной группы.
В процессе формирования фермент-субстратного комплекса субстрат присоединяется к специфическому участку на молекуле фермента, который называется активным центром.
Активный центр – участок молекулы фермента, который связывает субстраты и от которого зависит специфичность каталитического действия ферментов; активный центр содержит функциональные группы остатков аминокислот и коферментов, пространственно сближенных и определённым образом ориентированных.
Несмотря на огромное разнообразие структуры ферментов, их специфичности и механизма действия, существует ряд общих закономерностей формирования активных центров.
Во-первых, на активный центр приходится относительно малая часть объёма фермента. Роль остальных аминокислотных остатков, составляющих основную массу фермента, состоит в том, чтобы обеспечить молекуле фермента правильную глобулярную форму.
Во-вторых, активный центр – это сложная трёхмерная структура, и в её образовании принимают участие группы, принадлежащие разным частям линейной последовательности аминокислот. Радикалы аминокислот, образующих активный центр, оказываются вблизи друг от друга в результате формирования третичной структуры белка (рисунок 5.1). Поэтому при воздействии факторов, вызывающих денатурацию (нагревание, концентрированные кислоты и щёлочи) утрачивается конформация активного центра и фермент теряет свою активность.
Участие аминокислотных остатков, образующих активный центр фермента, во взаимодействии с субстратом. Б. Положение этих аминокислотных остатков в первичной структуре фермента.
В-третьих, активный центр имеет форму узкого углубления или щели, в которую ограничен доступ воде, за исключением тех случаев, когда вода является одним из реагирующих веществ. В этом углублении присутствует несколько полярных аминокислотных остатков, необходимых для связывания субстрата и катализа.
В-четвёртых, в составе активного центра можно условно выделить две части: а) контактный или якорный участок, где происходит связывание субстрата в нужной ориентации; б) каталитический участок, обеспечивающий протекание реакции
В-пятых, субстраты относительно слабо связываются с ферментами. В связывании и превращении субстрата принимают участие следующие группировки аминокислотных радикалов:
полярные заряженные: карбоксильные группы глутамата и аспартата, аминогруппы лизина; гуанидиновые группы аргинина; имидазольные группы гистидина;
полярные незаряженные: гидроксильные группы серина и треонина; сульфгидрильные группы цистеина; фенольные группы тирозина;
неполярные группы: углеводородные цепи алифатических аминокислот; ароматические кольца фенилаланина и триптофана.
У сложных ферментов в формировании активных центров принимают участие также функциональные группы коферментов.
В образовании фермент-субстратных комплексов принимают участие те же молекулярные взаимодействия, что и обеспечивают формирование пространственной структуры макромолекул, межклеточные контакты и другие процессы в биологических системах:
водородные связи между полярными незаряженными группировками субстрата и фермента;
ионные связи между противоположно заряженными группировками субстрата и фермента;
гидрофобные взаимодействия между неполярными группировками субстрата и фермента.
Эти три основных типа нековалентных связей различаются по своей геометрии, энергии, специфичности.
8.2.2. Cпецифичность связывания субстрата с ферментом зависит от строго определённого расположения атомов в активном центре. Субстрат входит в активный центр, если он соответствует ему по форме. Существует две модели, описывающие взаимодействие субстрата с активным центром:
а) Модель жёсткого соответствия («ключ – замок»), предложена Э. Фишером в 1890 году. Активный центр считается заранее подогнанным под форму молекулы субстрата (рисунок 5.3). Эта модель не утратила своего значения для понимания некоторых свойств ферментов, например, их способности к строго определённому связыванию двух или большего числа субстратов или для объяснения кинетики насыщения субстратом.
б) Модель индуцированнного соответствия («рука – перчатка»), предложена Кошлендом в 1950-е годы. Согласно этой модели, субстрат вызывает (индуцирует) конформационные изменения фермента, и лишь в результате этих изменений аминокислотные остатки фермента принимают пространственную ориентацию, необходимую для связывания субстрата и катализа (рисунок 5.4). При этом другие аминокислотные остатки могут погрузиться вглубь молекулы фермента. Значение конформационных изменений, возникающих в молекуле фермента в процессе присоединения к ней субстрата можно рассмотреть на примере гексокиназы. Этот фермент катализирует фосфорилирование глюкозы в реакции с АТФ. Присоединение относительно небольшой молекулы глюкозы к активному центру гексокиназы приводит к сближению полипептидных цепей двух субъединиц, которые, как клещи, захватывают молекулу глюкозы (рисунок 8.5). По-видимому, при такой индуцированной подгонке конформации фермента к структуре субстрата молекула глюкозы также деформируется и облегчается её взаимодействие с молекулой АТФ.
Как уже отмечалось, ферменты, относятся к катализаторам, активность которых может регулироваться. Поэтому через ферменты можно контролировать скорость протекающих химических реакций в организме. Регуляция активности ферментов может осуществляться путем взаимодействия с ними различных биологических компонентов или чужеродных соединений (например, лекарств и ядов), которые принято называть модификаторами или регуляторами ферментов. Под действием модификаторов на фермент реакция может ускоряться (в этом случае их называют активаторами) или замедляться (в этом случае их называют ингибиторами).
8.4.2. Активация ферментов определяется по ускорению биохимических реакций, наступающему после действия модификатора. Одну группу активаторов составляют вещества, влияющие на область активного центра фермента. К ним относятся кофакторы ферментов и субстраты. Кофакторы (ионы металлов и коферменты) являются не только обязательными структурными элементами сложных ферментов, но и по существу их активаторами.
Из ионов металлов на активность многих ферментов влияют: NH4+, Na+, Mg2+, K+, Ca2+, Mn2+, Zn2+, Fe2+, Fe3+, Co2+. Ионы тяжелых металлов, как правило, оказывают ингибирующее влияние. Действие катионов в основном довольно специфично, но в большинстве случаев фермент активируется более, чем одним катионом. Наблюдается также явление антагонизма между ионами. Наиболее известен антагонизм между Na+ и К+ и между Mg2+ и Са2+.
Магний является природным активатором ферментов, действующих на фосфорилированные субстраты (фосфатазы, киназы, синтетазы), но в условиях in vitro может быть заменён марганцем.
Анионы в общем мало влияют на активность ферментов, и их воздействие лишено специфичности. Исключением является амилаза, активируемая хлоридами, а также, в меньшей степени, другими галогенами. Влияние активирующего иона изменяется также в зависимости от рН. Степень очистки фермента также влияет на активирующую концентрацию иона и на специфичность активации. Высокоочищенные ферменты характеризуются большей избирательностью по отношению к активирующим ионам.
8.4.3. Активирующее действие ионов металлов реализуется различными путями. Наиболее типичным механизмом является включение иона в структуру каталитического центра фермента, который без него не проявляет активности. Это типичная функция металла в роли кофермента. Другой, довольно частой функцией активирующего металла является образование связи между ферментом и субстратом, или между ферментом, коферментом и субстратом. Например, ионы Zn2+ в составе фермента алкогольдегидрогеназы образуют 2 координационные связи с молекулой кофермента НАД+, 3 координационные связи с молекулой апофермента, а шестая координационная связь присоединяет субстрат (рисунок 8.9).
Рисунок 8.9. Участие иона цинка в связывании алкогольдегидрогеназой печени кофермента и субстрата.
Ионы металлов, так же как и субстраты, коферменты, их предшественники и структурные аналоги, можно использовать на практике в качестве препаратов, регулирующих активность ферментов.
Раздел 8.5
Виды ингибирования ферментов (обратимое и необратимое, конкурентное и неконкурентное).
8.5.1. Ингибирование - частичное или полное торможение ферментативной реакции под действием веществ различной химической природы. Вещества, вызывающие ингибирование ферментов, называют ингибиторами.
Различают обратимое и необратимое ингибирование. Если ингибитор вызывает стойкое снижение скорости реакции, то это необратимое ингибирование. При этом образуются ковалентные связи между молекулами фермента и ингибитора. Некоторые ферменты полностью ингибируются очень малыми концентрациями ионов тяжёлых металлов, например, ионов ртути (Hg2+), серебра (Ag+) и мышьяка (As+), или иодуксусной кислотой. Эти ингибиторы необратимо соединяются с SH-группами ферментов и вызывают денатурацию ферментного белка.
Диизопропилфторфосфат (ДФФ) – соединение из группы нервнопаралитических отравляющих веществ. Он является ингибитором ацетилхолинэстеразы, которая инактивирует нейромедиатор ацетилхолин. ДФФ связывается с остатком аминокислоты серина в активном центре и блокирует действие фермента (рисунок 8.10). В результате ацетилхолин накапливается в синаптической щели, нервные импульсы следуют один за другим, мышца не расслабляется, и наступает паралич или смерть.
Другим примером необратимого ингибирования может служить действие цианидов на фермент цитохромоксидазу, участвующую в окислительно-восстановительных процессах в митохондриях клеток. Отравление цианидами может привести к смерти.
Если ингибитор соединяется с ферментом при помощи нековалентных связей, то возможно восстановление исходной активности фермента после удаления ингибитора, например, путём диализа. Такое ингибирование называется обратимым.
8.5.2. Обратимое ингибирование можно разделить на конкурентное и неконкурентное.
Запомните особенности, характерные для конкурентного ингибирования:
конкурентный ингибитор сходен по строению с субстратом.
конкурентный ингибитор взаимодействует с активным центром фермента, образуя фермент-ингибиторный комплекс, и препятствует взаимодействию активного центра с субстратом.
действие конкурентного ингибитора зависит от его концентрации: чем выше концентрация ингибитора, тем ниже скорость ферментативной реакции.
действие конкурентного ингибитора можно снять, увеличив концентрацию субстрата.
График зависимости скорости ферментативной реакции от концентрации субстрата в присутствии конкурентного ингибитора даёт такую же величину Vmax, как и в отсутствии ингибитора. Величина KM в данном случае будет увеличена, поскольку для обеспечения скорости, равной половине максимальной, в присутствии ингибитора потребуется больше субстрата. Отсюда следует, что конкурентный ингибитор препятствует образованию фермент-субстратного комплекса, но не влияет на процесс распада фермент-субстратного комплекса с образованием продуктов реакции (рисунок 8.11).
Рисунок 8.11. Влияние конкурентного ингибитора на кинетические свойства фермента.
Примером конкурентного ингибирования является ингибирование фермента сукцинатдегидрогеназы малоновой кислотой (рисунок 8.12). Сукцинатдегидрогеназа катализирует реакцию дегидрирования янтарной кислоты с образованием фумаровой кислоты. Малоновая кислота, как и янтарная кислота, содержит две карбоксильные группы, но обладает более короткой углеродной цепью. Поэтому дегидрирование малоновой кислоты невозможно. Если концентрация малоновой кислоты в среде будет превышать концентрацию янтарной, то активность сукцинатдегидрогеназы снижается. Ингибирующее действие малоновой кислоты исчезает при увеличении концентрации янтарной кислоты.
Рисунок 8.12. Конкурентное ингибирование сукцинатдегидрогеназы малоновой кислотой.
8.5.3. Запомните особенности, характерные для неконкурентного ингибирования:
неконкурентный ингибитор не сходен по строению с субстратом.
неконкурентный ингибитор может взаимодействовать, как правило, не с активным центром фермента, а с другими участками в молекуле фермента. Поэтому фермент-ингибиторный комплекс может присоединять субстрат. На ввиду изменения конформации активного центра сродство к субстрату будет понижено.
действие неконкурентного ингибитора не зависит от его концентрации.
действие неконкурентного ингибитора нельзя снять, увеличив концентрацию субстрата.
График зависимости скорости реакции от концентрации субстрата в присутствии неконкурентного ингибитора показывает сниженную величину Vmax. Субстрат не может вытеснить ингибитор из его соединения с ферментом. Величина KM в присутствии неконкурентного ингибитора не меняется. Это значит, что неконкурентный ингибитор воздействует на фермент на стадии распада фермент-субстратного комплекса, но не влияет на связывание субстрата (рисунок 8.13).
Неконкурентные ингибиторы снижают количество молекул субстрата, которые взаимодействуют с одной молекулой фермента в единицу времени (число оборотов фермента).
Ингибиторы ряда ферментов используются в медицине как химиотерапевтические препараты. Целью химиотерапии является уничтожение возбудителя болезни при помощи химических веществ, не повреждая при этом организма-хозяина.
Раздел 8.6
Регуляция активности ферментов путём ковалентной модификации и по принципу отрицательной обратной связи.
8.6.1. В ряде случаев каталитическая активность ферментов может изменяться путём ковалентной модификации - в результате разрыва или образования ковалентных связей в молекуле. Существует несколько вариантов ковалентной модификации, из которых наибольший интерес представляют частичный протеолиз и регуляция путём фосфорилирования — дефосфорилирования.
8.6.2. Частичный протеолиз. Многие белки синтезируются в форме неактивных предшественников, которые затем активируются в результате специфического расщепления одной или нескольких пептидных связей. Если каталитически активный белок называется ферментом (или энзимом), то неактивный предшественник фермента называется проферментом (или зимогеном).
Активация белков путем частичного протеолиза - процесс, широко распространенный в биологических системах. Вот несколько примеров.
пищеварительные ферменты, гидролизующие белки, синтезируются в желудке и поджелудочной железе в виде проферментов: пепсин – в виде пепсиногена, трипсин – в виде трипсиногена и т.д.
свертывание крови представляет собой каскад реакций протеолитической активации проферментов. Это обеспечивает быструю ответную реакцию на повреждение кровеносного сосуда.
некоторые белковые гормоны синтезируются в виде неактивных предшественников. Например, инсулин образуется из проинсулина.
фибриллярный белок соединительной ткани коллаген также образуется из предшественника — проколлагена.
Активацию неактивных предшественников ферментов путем частичного протеолиза можно рассмотреть на примере превращения трипсиногена в трипсин. Этот процесс происходит под действием фермента энтеропептидазы в просвете двенадцатиперстной кишки и сводится к отщеплению с N-конца полипептидной цепи 6 аминокислотных остатков и соответственно укорочению полипептидной цепи (рисунок 8.14). Такое же действие на трипсиноген оказывает и активный трипсин.
В результате изменения первичной структуры в молекуле профермента возникают новые нековалентные связи, изменяется конформация полипептидной цепи и формируется активный центр. В молекуле профермента активный центр отсутствует.
Физиологический смысл выработки пищеварительных ферментов в форме проферментов заключается в том, что в противном случае ферменты могли бы оказывать свой эффект на клеточные белки слизистой желудка и поджелудочной железы, вызывая разрушение этих клеток. Такое разрушение клеток может наблюдаться, например, при панкреатите, когда активация трипсина происходит непосредственно в поджелудочной железе.
Фосфорилирование – дефосфорилирование ферментов – присоединение или отщепление фосфатной группы. В отличие от частичного протеолиза, это обратимое изменение каталитической активности ферментов.
Такие ферменты могут существовать в двух формах – фосфорилированной и дефосфорилированной. В зависимости от конкретного случая, одна из этих форм будет обладать более высокой, а другая – более низкой каталитической активностью.
Фосфорилированию обычно подвергаются остатки серина, реже тирозина или треонина. Донором фосфатной группы является молекула АТФ. Фосфорилирование происходит избирательно и затрагивает лишь небольшое число аминокислотных остатков, не обязательно в активном центре фермента. Присоединение фосфата приводит к изменению конформации фермента и его активности. Фосфатные группы, связанные с остатками аминокислот, удаляются путём гидролиза с образованием неорганической фосфорной кислоты.
Фосфорилирование и дефосфорилирование катализируется протеинкиназами и протеинфосфатазами соответственно (рисунок 8.15). Активность протеинкиназ и протеинфосфатаз находится под гормональным контролем и регулируется также нервной системой.
Примером фермента, активность которого регулируется путём обратимого фосфорилирования, является гликогенфосфорилаза, участвующая в распаде гликогена в клетках печени и мышц. Неактивная форма фермента (дефосфорилированная) превращается в активную форму (фосфорилированную) при помощи другого фермента – киназы фосфорилазы. Реакцию дефосфорилирования катализирует фосфатаза фосфорилазы которая инактивирует фосфорилазу.
8.6.3. Регуляция по принципу отрицательной обратной связи. В результате аллостерических механизмов и ковалентной модификации происходит изменение активности уже имеющихся в клетке молекул фермента. Существуют также механизмы, влияющие на скорость реакций обмена веществ путём изменения количества молекул ферментативного белка в клетке.
В настоящее время установлено, что синтез и распад ферментов, как и других белков, происходит в организме непрерывно. У взрослого здорового человека в условиях динамического равновесия процессы синтеза и распада имеют одинаковую скорость, благодаря чему общее содержание фермента не изменяется во времени. Для каждого фермента характерна своя скорость распада. В большинстве случаев полное прекращение синтеза фермента привело бы к исчезновению 50% молекул фермента за несколько дней, но некоторые ферменты обновляются значительно быстрее. Скорость синтеза фермента может варьировать от нуля до максимума, тогда как скорость распада представляется постоянной. Таким образом, любое вещество, влияющее на скорость синтеза фермента, способно оказать существенное воздействие на регуляцию обмена веществ путем изменения соотношения ферментов в организме. В основе многих гормональных воздействий на обмен веществ у человека лежат, как было установлено, именно такие контролирующие влияния на выработку каталитически активных белков.
Конечный продукт (Г) цепи метаболических реакций снижает концентрацию фермента, катализирующего этап Б ® В путем репрессии его синтеза. Субстрат (Б) индуцирует синтез того фермента, который превращает его в В, препятствуя действию репрессора.
Вещество, которое избирательно препятствует синтезу определенного фермента, называется репрессором. При помощи механизма репрессии конечные продукты реакций обмена веществ могут регулировать процесс их собственного образования по принципу обратной связи. Было доказано, что в некоторых системах накопление метаболитов, образующихся в итоге цепи последовательных реакций, предотвращает синтез одного из ферментов, функционирующего в начале этой цепи (рисунок 8.16). Продукт реакции в таком случае действует как специфический репрессор синтеза этого фермента предотвращая как ненужное потребление субстратов, вовлекаемых в реакции данной метаболической цепи, так и бесполезный расход энергии и аминокислот, необходимых для образования каталитически активного белка.
Примером того, как конечные продукты цепи химических реакций способны замедлять синтез ферментных белков, катализирующих начальные стадии процесса (то есть снижать количество молекул этих ферментов), может служить регуляция синтеза гемоглобина в клетках кроветворных органов. По мере накопления гема в этих клетках подавляется синтез фермента, катализирующего первую реакцию синтеза гема (рисунок 8.17). Тем самым предупреждается избыточное накопление гемоглобина в клетке.
синтез гема
Явление, противоположное репрессии, известно под названиями индукция фермента или дерепрессия. В типичном случае субстрат определенного фермента способен индуцировать синтез этого фермента, что в свою очередь стимулирует потребление данного субстрата. Воздействуя на механизм синтеза фермента, индуктор, вероятно, прямо или косвенно противодействует репрессору. Соотношение между репрессором (конечным продуктом) и индуктором (субстратом) определяет, таким образом, количество ключевых ферментов и обеспечивает приспособление последовательности метаболических реакций к количеству метаболитов, поступающих в клетки организма с пищей.
Как и в случае регуляторных ферментов, лишь немногие ключевые ферменты способны реагировать подобным образом на изменение физиологических потребностей. Такие ферменты называютиндуцибельными (или адаптивными); ферменты, содержание которых в таких условиях не изменяется, называют конститутивными; они составляют постоянное содержимое клетки.
У человека на адаптивные ферменты, вероятно, в большей мере влияют эндокринные факторы, нежели промежуточные продукты реакций обмена веществ. Так, гормоны коры надпочечниковглюкокортикоиды стимулируют синтез ферментов, участвующих в образовании сахара крови (глюкозы), тогда как гормон поджелудочной железы инсулин противодействует этому. Глюкокортикоиды прямо или косвенно играют роль индукторов ферментов, когда как инсулин усиливает процесс репрессии. От определяемой противоположными воздействиями индукции и репрессии уровня синтеза ферментов зависит физиологическая регуляция содержания глюкозы в крови этими противоборствующими эндокринными системами.
Дата публикования: 2015-10-09; Прочитано: 2865 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!