Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Проекций точек



8.2.1. Двухкартинный комплексный

чертеж точки

Геометрические модели точек пространства в системе 2-х

плоскостей проекций (рис.8.6)

Точки А, В, С, … в эвклидовом про-странстве могут отличаться только сво-им положением по отношению к плос-костям проекций П1 и П2, а также к d, т.е., они могут располагаться в разных его квадрантах, совпадать с плоскостя-ми проекций, с биссекторной плоскос-тью d, а также с осью х12.

С введением биссекторной плоско-сти d угла совмещения плоскостей П1 и П2 практически отпадает необходимо-сть в П1.

Точки пространства, независимо от их положения в том или ином квадранте прежде из центра S1¥ проецируются, минуя П1, на d, а затем полученные на ней проекции из центра S2 проециру-ются на П¢ º П2 . Тем самым устраняет-ся процесс совмещения П1 с П2 и свя-занное с ним искривление проецирую-щих лучей.

Графические модели различных точек пространства в системе 2-х плоскостей проекций (рис.8.7)

Определение 8.4. Графическая мо-дель точки в системе двух плоскос-

тей проекций называется б и н а р –

н о й.

Определение 8.5. Всякая пара кол-линейных разноименных проекций то-чки на вертикальной линии связи явля-ется бинарной геометро-графической

моделью одной точки эвклидова про-странства.

Изобразительные свойства ортогональных проекций различных точек эвклидова пространства (рис.8.7)

В изобразительных свойствах про-екций точек будем различать их позици-онное и метрическое содержание.

Позиционное содержание описы-вает особенности расположения проек-ций точек относительно оси х12, кодиру-ющие информацию о положении самих точек в пространстве, отнесенном к си-стеме двух плоскостей ортогональных проекций.

1. Если А2 выше (­) х12 , А1 ниже (¯) х12 , то точка А - в 1-й четверти.

или

1. А2 ­ х12, А1 ¯ х12 Þ А Î 1 четв.;

2. В2 , В1 ­ х12 Þ В Î 2 четв.;

3. С2 ¯ х12 , С1 ­ х12 Þ С Î 3 четв.;

4. D2 , D1 ¯ х12 Þ D Î 4 четв.

5. Е1 º Е2 º х12 Þ Е Î х12;

6. М2 ­ х12 , М1 Î х12 Þ М Î П2 ;

7. N2 Î х12 , N1 ¯ x12 Þ N Î П1 ;

8. (К2 º К1х12 , (L2 º L1) ¯ x12 Þ K,L Î d

Если в рис.8.7 убрать ось х12, то ис-чезнут двойные точки А12, В12 и т.д. и полученный чертёж станет безосным.

Метрическое содержание изобрази-тельных свойств ортогональных проек-ций точек описывает метрику положе-ния изображаемых точек относительно плоскостей проекций.

Если отрезки линий связи между проекциями точек и осью х12 изобра-жают соответствующие участки прое-ирующих лучей от самих точек до пер-пендикулярных к ним плоскостей проек-ций, то эти участки проецируются на те плоскости проекций, к которым они параллельны, в натуральную величину. Поэтому:

1. Расстояние от фронтальной проекции точки до оси проекций х12 равно расстоянию от самой точки до горизонтальной плоскости проекций.

2. Расстояние от горизонтальной

проекции точки до х12 равно расстоя-нию от самой точки до П2.

3. Если одна из проекций точки при-надлежит оси х12, то сама точка принад-

лежит одной из плоскостей проекций.

Рис.8.8. Геометрическая модель

точки А в системе трёх плоскостей

проекций

Рис.8.9. Трехкартинные чертежи

различных точек

8.2.2. Трёхкартинный комплексный

чертёж точки

Геометрические модели точек в системе трёх плоскостей проекций

Аппарат получения трёхкартинного комплексного чертежа образуется до-полнением аппарата получения двух-картинного чертежа (см. рис. 8.1) треть-ей, профильной плоскостью проекций (см. рис.8.4). При этом практически тре-тья проекция точки является как бы ис-комой при двух заданных. Отсюда вы-текает постановка важной построите-льной графической задачи: по двум за-данным проекциям объекта постритьего третью проекцию.

Решение этой задачи даёт дополнительную или избыточ-ную информацию о структуре объекта к той необходимой и достаточной, т.е., оптималь-ной информации, которой об-ладают две данные проекции.

Можно также сказать, что

процесс построения третьей

проекции по двум заданным

является процессом п р е о б-

р а з о в а н и я заданных проекций в искомую.

Так как в аппарате полу-чения трёхкартинного компле-ксного чертежа (см. рис.8.4) биссектор-ные плоскости d и g углов совмещения П1 и П3 с П2 º П¢ практически заменяют плоскости проекций П1 и П3, то геоме-трическая модель точки А в системе трёх плоскостей проекций приобретает вид, приведенный на рис. 8.8.

Графические модели точек

в системе трёх плоскостей проекций

Определение 8.6. Графическая модель точки в системе трёх плоскостей проекций называется т е р н а р-

н о й.

Определение 8.7. Вся-кая тройка точек как три вершины прямоугольника линий связи, четвёртая вершина которого прина-длежит постоянной пря-мой трехкартинного комплексного

чертежа, называется тернарной мо-

моделью одной точки эвклидова про-странства (рис.8.9).

Изобразительные свойства трёхкартинного комплексного чертежа точки (см. рис.8.9)

Независимо от того, где расположе-на точка А:

1. её горизонтальная проекция А1 и фронтальная проекция А2 всегда рас-

полагаются на одной вертикальной линии связи;

2. её фронтальная проекция А2 и профильная проекция А3 всегда рас-полагаются на одной горизонтальной линии связи;

3. её горизонтальная А1 и про- фильная А3 проекции всегда взаимо-связаны двухзвенной ломаной линией связи с точкой излома на постоянной прямой k123 трёхкартинного комплекс-ного чертежа.





Дата публикования: 2015-09-17; Прочитано: 266 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...