Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Способы определения местоположения транспортных средств



Задача определения местоположения транспортного средства заключается в определении его координат на поверхности Земли. Системы определения местоположения подразделяются на системы локального определения местоположения и системы дистанционного определения местоположения. В случае локального определения местоположения объект сам определяет свое положение. В качестве примера можно привести систему GPS. Дистанционное определение местоположения осуществляется из центрального пункта, который определяет местоположение отдельных объектов. В таком режиме работают, например, радиолокаторные системы.

Для определения местоположения используются, в основном, четыре технических метода: прямое определение местоположения, косвенное определение местоположения, спутниковые системы и наземные передатчики. Из них наиболее распространенным стало косвенное определение местоположения в сочетании со спутниковыми системами. Существенное преимущество систем заключается в том, что они не нуждаются в создании центральных пунктов или сложной инфраструктуры связи.

Известно, что использование датчиков (рис.13.4) только одного типа не позволяет, как правило, определить местоположение объекта с высокой точностью и достаточной надежностью. Поэтому часто комбинируются данные различных датчиков с помощью различных методов и алгоритмов.

Рисунок 13.4 – Датчики, используемые для определения местонахождения ТС

Прямое определение местоположения. Казалось бы, что это – самый простой метод определения местоположения, так как местоположение определяется в момент прохождения транспортного средства через данное сечение, образованное, например, радиомаяком. В данном случае часто говорят о датчике положения, сигнал которого может передаваться не только с помощью радиоволн, но также с помощью световых или инфракрасных лучей. Существенным условием является наличие в транспортном средстве бортового устройства, способного вести связь с радиомаяком. Кроме того, должна быть создана достаточно густая сеть маяков, покрывающих данную область.

При отсутствии бортового устройства используются видеокамеры, которые позволяют прочитать номерные знаки и по ним определять проезд ТС через данную сеть. Основным недостатком такой системы, которая используется для электронной платы за проезд, является высокая стоимость создаваемой инфраструктуры. Она содержит не только цену радиомаяков, но и цену всей сети связи. Поэтому эту систему не рекомендуется использовать только для определения местоположения ТС.

Косвенное определение местоположения. Данный метод является одним из простейших, и он основан на принципе, по которому можно подсчитать положение ТС, движущегося в двухразмерном пространстве, если известно его исходное положение (рис. 13.5). Этот метод заключается в суммировании приращений траектории и углов направления относительно исходной точки, т. е. определяется положение относительно опорной точки.

Рисунок 13.5 – Метод косвенного определения местоположения

Основной недостаток метода заключается в суммировании погрешностей при каждом измерении.

Спутниковая навигация. Современный этап развития методов определения координат связан с созданием спутниковых систем навигации.

Спутниковые системы первого поколения – это американская система Transit и советская система Цикада. Система Transit изначально разработанная для управления подводными лодками была запущена в 1964 г. и состояла из 7 низкоорбитальных спутников. С 1967 г. она стала доступна для гражданских пользователей. В 2000 г. система была выведена из эксплуатации.

Развертывание системы Цикада было начато в 1967 г., когда был выведен на орбиту первый навигационный спутник. Полностью система введена в эксплуатацию в 1979 году в составе четырех космических аппаратов. В настоящее время «Цикада» имеет ограниченное применение в навигации. Советский Союз и Россия имеет военный вариант системы, называемый «Циклон».

В обеих системах координаты определялись на основании доплеровского сдвига частоты от каждого спутника, по которому определялось положение наблюдателя относительно спутника. Высота орбит спутников и в той и в другой системе 1000 км, точность навигации около 100 м. Хотя эти системы и покрывали основные потребности в навигации судов, но имели и существенные недостатки – низкое быстродействие, отсутствие непрерывной доступности, возможность позиционировать только медленно движущиеся объекты и др.

Спутниковые системы второго поколения – это уже работающие, или вводимые в эксплуатацию, системы это американская NAVSTAR (GPS), российская ГЛОНАСС, европейская ГАЛИЛЕО, китайская БЕЙДОУ, индийская IRNSS.

GPS (Global Positioning System) – спутниковая радионавигационная система, обеспечивающая высокоточное определение координат объектов в любой точке земной поверхности в любое время суток. На сегодняшний день в научной и другой специализированной литературе, а так же во многих официальных документах, аббревиатуру GPS относят исключительно к американской системе NAVSTAR, хотя изначально предполагалось, что так будут называть все глобальные спутниковые системы позиционирования.

NAVSTAR (NAVigation Sattelite providing Time And Range) – навигационная система, обеспечивающая измерение времени и расстояния.

GPS была разработана в США и находится под управлением министерства обороны. Развертывание системы началось в 1977 г., когда был запущен первый спутник, а осуществлено полностью в 1993 г. Первоначально основным назначением GPS была высокоточная навигация военных объектов, но уже в 1983 г. система стала открытой для гражданского использования, а в 1991 г. были сняты ограничения на продажу GPS-оборудования странам бывшего СССР.

На настоящий момент в орбитальную группировку входит 32 спутника.

ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система). Первый спутник был запущен в 1982 г., в 1995 г. развертывание системы было закончено, было запущено 24 спутника, однако многие из них вышли из строя, и до недавнего времени система не функционировала в полном объеме. Запуск новых спутников в 2009–2011 гг. существенно изменил ситуацию. На 14 ноября 2011 г. в орбитальную группировку входило 30 спутников, из которых 23 использовалось по целевому назначению. Таким образом, в конце 2011 г. ГЛОНАСС стала обеспечивать навигацию практически по всему Земному шару.

Галилео – Европейская спутниковая навигационная система. Первые экспериментальные спутники были запущены в 2005 и 2008 гг. В октябре 2011г. были запущены два первых рабочих спутника, еще два предполагается запустить в 2012 г. Всего предполагается к запуску 30 спутников. 27 рабочих и 3 запасных.

Бэйдоу (китайской название созвездия Большой Медведицы) – китайская спутниковая навигационная система. 27 июля 2011г. был запущен 9-й спутник. Предполагается, что в пределах Азиатско-Тихоокеанского региона система начнет оказывать навигационные услуги уже в 2012г. Полностью развертывание системы, состоящей из 35 спутников, намечено завершить в 2020 г.

IRNSS – индийская навигационная спутниковая система, находится в состоянии разработки. Предполагается для использования только в этой стране. Первый спутник был запущен в 2008 году.

В зависимости от класса используемого наземного оборудования точность определения координат объектов при помощи GPS и ГЛОНАСС лежит в интервале от 10 м до единиц миллиметров (точность определения абсолютных координат на Земле), а время проведения измерений в большинстве случаев составляет от секунд до единиц минут. На сегодняшний день методы спутниковой навигации являются наиболее точными из всех существующих для определения координат наземных и околоземных объектов.

Назначение спутниковых систем. Навигационные спутниковые системы предназначены для определения местоположения, скорости движения, а также точного времени морских, воздушных, сухопутных и других видов потребителей. NAVSTAR и ГЛОНАСС – системы двойного назначения, изначально разработанные по заказу и под контролем военных для нужд Министерств обороны и поэтому первое, и основное назначение у систем стратегическое, второе назначение указанных систем гражданское. Исходя из этого, все действующие ныне спутники передают два вида сигналов: стандартной точности для гражданских пользователей и высокой точности для военных пользователей (этот сигнал закодирован и доступен только при предоставлении соответствующего уровня доступа от Министерства обороны).

Общий состав системы. Система глобального позиционирования (GPS) включает в себя 3 сегмента (рис. 13.6):

- космический сегмент (все рабочие спутники).

- управляющий сегмент (все наземные станции системы: основная управляющая и дополнительные для контроля).

- сегмент пользователя (все гражданские и военные GPS пользователи).

Космический сегмент. Спутники, разбитые по группам, вращаются в своих орбитальных плоскостях на неизменной средневысотной орбите, на постоянном расстоянии от поверхности Земли. Для получения сигнала в любое время, в любой точке земного шара и в 100 километрах от поверхности земли требуется 24 спутника. Если разделить условно, то по 12 спутников на каждое полушарие. Орбиты этих спутников образуют «сетку» над поверхностью земли, благодаря чему над горизонтом всегда гарантированно находятся минимум четыре спутника, а созвездие построено так, что, как правило, одновременно доступно не менее шести.

Рисунок 13.6 – Общий состав системы GNSS

Полностью развёрнутая спутниковая система (рис. 13.7) имеет также резервные спутники, по одному в каждой плоскости, для «горячей» замены (в случае выхода основного спутника из строя они могут быть оперативно введены). Резервные спутники не бездействуют и также участвуют в работе системы, улучшая точность позиционирования. Они также могут быть использованы и для увеличения степени покрытия отдельного региона. Спутники в ограниченных пределах могут быть перегруппированы по команде с наземной станции управления, но в связи с ограниченным запасом топлива на борту спутника делается это только в исключительных случаях. При необходимости в течение срока службы происходит лишь небольшая коррекция движения. На борту спутника располагаются несколько эталонов времени и частоты «высокоточные атомные часы». Работает всегда один эталон, а располагается их в спутнике несколько (от трёх до четырёх).

Спутниковые навигационные системы сконструированы таким образом, чтобы из любой точки на Земле было видно как минимум 4 спутника (рис. 13.8).

а б

а) орбиты GPS спутников в 6 различных плоскостях; б) позиции спутников на карте

Рисунок 13.7 – Космический сегмент системы

Таким образом, несмотря на погрешность часов приемника и ошибок по времени, позиция вычисляется с точностью примерно 5–10 м.

Рисунок 13.8 – Четыре спутника для определения позиции в 3-D пространстве

Источники ошибок при распространении сигнала представлены на рис. 13.9.

Рисунок 13.9 – Источники ошибок при распространении сигнала

Спутниковая дальнометрия. Системы спутниковой навигации используют высоко расположенные спутники, которые размещаются таким образом, чтобы из любой точки n на земле можно было провести линию, по крайней мере, к четырем спутникам.

Определение местоположения подвижного объекта с помощью наземных передатчиков.

Определение местоположения абонента в сетях GSM. Теоретически системы определения местоположения (ОМП) позволяют определить координаты абонента с точностью до нескольких десятков метров и являются реальной альтернативой системам глобального спутникового позиционирования, но лишь на территории обслуживания сотовых сетей.

Задача позиционирования мобильных телефонов предполагает автоматическое определение их местоположения в пределах сотовых сетей. При этом под термином «местоположение» следует понимать не нахождение географических координат – широты и долготы, что в принципе также возможно, а однозначную идентификацию положения владельца мобильного телефона на местности (электронной карте).

Согласно принятой классификации, СМП делятся на два основных типа: системы, для функционирования которых необходима доработка или замена абонентских устройств, и, работающие с обычными мобильными терминалами (системы позиционирования внутри сотовой сети).

В первом случае потребуется либо новая SIM-карта, либо новый аппарат, а возможно, и то и другое. Во втором случае никаких изменений в аппаратной части мобильного терминала не требуется, а необходимо только изменение программной части, таким образом, все затраты на развертывание системы несет оператор сети.

Для определения положения мобильного аппарата могут быть использованы три основных параметра радиосигналов: направление прихода, амплитуда и время задержки.

Амплитуда принимаемых сигналов способна характеризовать расстояние между передатчиком и приемником. Однако на практике уровень сигналов мобильного телефона в месте приема зависит от столь большого числа причин, что в большинстве случаев не может обеспечить требуемую точность определения места и используется в качестве вспомогательного параметра.

Направление прихода сигналов может автоматически определяться, по различию фаз сигналов на элементах антенны. Можно также использовать несколько базовых станций, расположенных по соседству. Использования секторных антенн, вместо всенаправленных, позволяет определить направление прихода сигналов с большей точностью. Пересечение пеленгов из двух или большего числа мест обеспечивает с определенной точностью определение положения мобильного телефона.

При реализации угломерного метода – метод направления прихода сигналов – Angle of Arrival – АОА измеряемыми параметрами являются углы направления прихода излучения радиотелефона α1 и α2 (град) (рис. 13.10) относительно линии базы, соединяющей две сотовые станции сети.

Рисунок 13.10 – Принцип реализации угломерного метода

При реализации дальномерного метода измеряемыми параметрами являются временные задержки Dt1 [c] и Dt2 (сек) (рис. 13.11) распространения сигнала радиотелефона абонента не менее, чем до двух сотовых станций сети относительно их временных шкал, которые должны быть синхронизированы между собой, а рассчитываемыми параметрами – дальности от сотовых станций до места расположения абонента.

Рисунок 13.11 – Принципиальная схема реализации дальномерного метода.

При реализации разностно-дальномерного метода измеряемыми параметрами являются временные задержки Dt1[c], Dt2[c] и Dt3[c] распространения сигнала радиотелефона абонента не менее чем до трех базовых станций сети относительно их синхронизированных временных шкал, а рассчитываемыми параметрами – дальности от сотовых станций до места расположения абонента.

Недостатками такой системы местоопределения можно назвать:

· Низкую точность в местоопределении (по сравнению со спутниковыми системами);

· Привязку к определенному оператору сотовой связи (GPS – глобальная система);

· Неравномерность качества услуги (зависимость от зоны действия сигнала).

Определение местоположения подвижного объекта с помощью системы контрольных пунктов. С помощью достаточно большого количества дорожных указателей или контрольных пунктов (КП), точное местоположение которых известно в системе, на территории города создается сеть контрольных зон. Местоположение транспортного средства определяется по мере прохождения им КП. Индивидуальный код КП передается в бортовую аппаратуру, которая через подсистему передачи данных передает эту информацию, а также свой идентификационный код в подсистему управления и обработки данных. Таким образом, реализуется метод прямого приближения. Однако на практике чаще используется инверсный метод приближения – обнаружение и идентификация транспортных средств осуществляется с помощью установленных на них активных, пассивных или полуактивных маломощных радиомаяков, передающих на приемник КП свой индивидуальный код, или же с помощью оптической аппаратуры считывания и распознавания характерных признаков объекта, например, автомобильных номеров. Информация от КП далее передается в подсистему управления и обработки данных.

Очевидно, для зоновых систем точность местоопределения и периодичность обновления данных напрямую зависит от плотности расположения КП по территории действия системы. Методы приближения требую развитой инфраструктуры связи для организации подсистемы передачи данных с большого числа КП в центр управления и контроля, а в случае использования оптических методов считывания требуют и сложной аппаратуры на КП, и поэтому являются весьма дорогим при построении систем, охватывающих большие территории. В то же время, инверсные методы приближения позволяют минимизировать объемы бортовой аппаратуры – радиомаяка, либо вовсе обойтись без устанавливаемой на автомашину аппаратуры. Основное применение данных систем – комплексное обеспечение охраны автомашин, обеспечение поиска автомашин при угоне. Примером подобной системы является система «КОРЗ-ГАИ», обеспечивающая фиксацию приближения угнанной оборудованной автомашины к посту ГАИ.

Наиболее развита сеть дорожных указателей, с помощью которых реализуются системы как прямого, так и инверсного приближения в Японии. Дорожные указатели в Японии образуют общенациональную сеть. В Европе в 70-80гг. активно внедрялись системы избирательного обнаружения, идентификации и определения местонахождения транспортных средств, разработанных фирмами Philips и Cotag International Ltd (Великобритания). Дорожные указатели в виде электромагнитных петель размещаются непосредственно в дорожном покрытии. На ТС устанавливается полуактивный импульсный радиоответчик, включаемый при воздействии на него электромагнитного поля петли. В настоящее время в европейских странах активно действует компания ANANDA Holding AG. Начиная с 1992г. во Франции, а затем в 12 странах Европы и в Мексике разворачиваются системы INMED/VOLBACK, предназначенные для обнаружения местонахождения похищенных автомашин. Приемные антенны контрольных пунктов встраиваются в дорожное покрытие, столбы и прочие элементы оформления проезжих частей. Передатчик на автомашине имеет размеры около 5х4х2 см. Контрольные пункты связаны в единую общеевропейскую сеть. Во Франции 1500 КП образуют 400 зон. По оценке французских специалистов эффективность возврата угнанных автомашин, оборудованных передатчиками системы INMED/VOLBACK, составляет более 85% против 60% для необорудованных автомашин. Общая численность оборудованного автотранспорта в Европе по оценке ANANDA Holding AG должна составить не менее 500 тысяч автомашин.

Контрольные вопросы

1. Специальные автоматические устройства для мониторинга работы транспортных средств. Краткая характеристика.

2. Виды чип-карт для цифровых тахографов.

3. Системы определения местоположения транспортных средств.

4. Способы определения местоположения транспортных средств.

5. Спутниковые навигационные системы для определения местоположения ТС.

6. Определение местоположения подвижного объекта с помощью наземных передатчиков.

7. Определение местоположения подвижного объекта с помощью системы контрольных пунктов.






Дата публикования: 2015-09-17; Прочитано: 2636 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...