![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Например, нам надо оценить эффективность действия рекламы какого-то товара. До запуска рекламы продажа товара по неделям (в шт.) имела следующий вид:

После выпуска рекламы продажа этого же товара по неделям стала иметь вид:

Следовательно, доверительный интервал с надежностью
для первой выборки равен

А для второй

![]() |
Однако нам необходимо со всей определенностью истолковать результаты эксперимента.
Мы можем высказать два предположения (статистические гипотезы).
1. Нулевая гипотеза. Между генеральными совокупностями с параметрами
и
,
и
разница равна нулю, т.е.
. Следовательно, разница между выборочными средними
возникла случайно, в процессе группировки данных.
2. Альтернативная гипотеза, т.е. противоположная.
Для проверки этих гипотез существуют специальные параметры, которые табулированы и приводятся в соответствующих справочниках.
В частности, если сравниваемые генеральные совокупности имеют нормальный закон распределения, то сравнение выборочных средних проводят с помощью
или критерия Стьюдента:

.
Согласно нулевой гипотезе
, отсюда:
(5.9)
Нулевая гипотеза (разницы нет) отвергается, если
для заданной надежности и числа (степеней свободы)
. Здесь
- фактический коэффициент Стьюдента, найденный по формуле (5.9), а
- теоретический коэффициент, найденный по специальным таблицам.
Для нашего примера
,
. Следовательно,
. По таблицам, для надежности
и числа
, находим
. Итак,
и нулевая гипотеза сохраняется: разница между результатами опыта и контроля оказалась статистически недостоверной.
Таблица
Стьюдента.
| k | Уровни надежности | ||
| 95 % | 99 % | 99,9 % | |
| 2,37 | 3,50 | 5,51 | |
| 2,31 | 3,36 | 5,04 | |
| 2,26 | 3,25 | 4,78 | |
| 2,23 | 3,17 | 4,59 |
Дата публикования: 2015-09-17; Прочитано: 207 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
