Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Оценка зон воздействия при разгерметизации емкостей и сосудов.
Аварийная разгерметизация оборудования для хранения, транспортирования и переработки веществ, находящихся в газообразном и жидком состоянии, приводит к выбросу содержимого аппаратов в окружающую среду. Размеры образующихся при этом опасных зон существенным образом зависят от физико-химических свойств поступающих в атмосферу веществ, условий их хранения в емкостях и т. д.
Рассмотрим способы хранения веществ в жидком состоянии.
Вещества, у которых критическая температура существенно ниже температуры окружающей среды, хранят в специальных теплоизоли-рованных резервуарах (криогенных резервуарах с высокоэффективной вакуумно-порошковой теплоизоляцией) в сжиженном состоянии водород, кислород, азот и т. д. Пары этих веществ, неизбежно образующиеся при таком способе хранения, либо снова сжижаются, либо сбрасываются в атмосферу. При разгерметизации такого сосуда к жидкости из окружающей среды поступает тепловой поток, что приводит к немедленному вскипанию жидкости и переходу ее в газообразное состояние. Интенсивность процесса парообразования пропорциональна скорости подвода теплоты, которая, в свою очередь, зависит от условий теплообмена криогенной жидкости с атмосферой и подстилающей поверхностью, на которую произошел пролив.
Вещества, у которых критическая температура больше температуры окружающей среды, а температура кипения меньше, тоже хранятся в жидком состоянии, причем в отличие от веществ первой группы для сжижения их необходимо только сжать (СПГ, пропан, бутан, аммиак, хлор и т. д.). При разгерметизации емкости и потери давления в ней часть жидкости мгновенно испаряется, а оставшаяся охлаждается до температуры кипения при атмосферном давлении. Так, пропан может храниться при температуре 26,9 "С и давлении 1 МПа. После разгерметизации резервуара и падении давления до атмосферного температура оставшейся (неиспарившейся) жидкости будет —42,1°С. Неиспарившаяся жидкость может разлиться по подстилающей поверхности, и дальнейший процесс испарения будет происходить за счет притока теплоты из окружающей среды.
Вещества, у которых критическая температура и температура кипения больше температуры окружающей среды, находятся при атмосферном давлении в жидком состоянии. При поступлении таких веществ в атмосферу интенсивность процесса испарения определяется разностью парциальных давлений пара над поверхностью жидкости и в окружающей среде. Так как температура окружающей среды может лежать в широком диапазоне —40...+50 °С (т. е. переменна для различных территорий и времен года), то одно и то же вещество можно отнести к этой или предыдущей группе. Так, температура кипения бутана при атмосферном давлении около 0° С, поэтому при отрицательных температурах окружающей среды бутан находится в жидком состоянии, а при положительных — в газообразном.
Таким образом, в зависимости от термодинамического состояния жидкости, находящейся в сосуде, возможны три пути протекания процесса при его разгерметизации:
—при больших энергиях перегрева жидкости или сжатых газов (паров) жидкость может полностью переходить во взвешенное мелкодисперсное и парообразное состояние с образованием взрывоопасных смесей;
—при низких энергетических параметрах жидкости происходит спокойный ее пролив на твердую поверхность, а испарение осуществляется путем теплоотдачи от твердой поверхности;
— промежуточный режим, когда в начальный момент происходит резкое вскипание жидкости с образованием^ мелкодисперсной фракции, а затем наступает режим свободного испарения с относительно низкими скоростями.
Для определения размеров зон воздействия необходимо вначале спрогнозировать, какое количество жидкости или газа поступит в окружающую среду при том или ином виде аварии. Приближенно количество мгновенно испарившейся жидкости
где т — доля мгновенно испарившейся жидкости в адиабатическом приближении при температуре Т; НТ — удельная энтальпия жидкости при температуре Т; Hx — удельная энтальпия жидкости в точке кипения при атмосферном давлении; rx — удельная скрытая теплота парообразования в точке кипения при атмосферном давлении.
На рис. 8.2 представлены данные о доле мгновенно испарившейся жидкости, полученные по приведенному соотношению.
На втором этапе расчета необходимо с учетом рельефа местности, климатических условий, планировки площадки рассчитать процессы растекания и испарения жидкости, а также рассеивание паров пролитой жидкости. Результатом такого расчета должны быть нанесенные на ситуационный план поля концентраций паров пролитой жидкости. На плане местности отмечают также динамику процесса рассеивания паров, прогнозируют изменение концентрации в различных точках местности по времени. Расчет рассеивания газообразных веществ в атмосфере см. ОНД—86 и ОНД — 90.
При проливах СДЯВ внешние границы заражения определяют по ингаляционной токсодозе. В качестве ее используют среднюю смертельную дозу Lw, среднюю поражающую, вызывающую поражения ниже легкой степени у 50 % пораженных £50; среднюю выводящую из строя /so; среднюю пороговую Pso.
Рис. 8.2. Доля мгновенно испарившейся жидкости в адиабатическом
приближении:
1 —этилен; 2— пропан; 3— хлор и аммиак;
4— бутан; tхр —температура хранения
Для характеристики воздействия на людей принимают дозу D, вычисляемую для определенной точки,
где С(t) —концентрация СДЯВ в воздухе, соответствующая моменту времени (t); t — время пребывания в данной точке.
В качестве критерия поражающего действия дозы, превышение которой определяет участки территории, соответствующие зоне заражения, используют токсодозу, характеризующую степень токсичности яда. Токсодоза различной степени тяжести поражения (Lso, Iw, Eso, Psa) при фиксированном времени экспозиции для каждого СДЯВ является постоянной величиной.
Решение задачи турбулентной диффузии СДЯВ для наземных источников может быть представлено в виде:
где D— токсодоза СДЯВ; х, у— расстояние по осям Х и У; Q— количество вещества, перешедшее в первичное или вторичное облако;
и — скорость ветра; l — константа, зависящая от вертикальной устойчивости атмосферы; y — параметр, определяемый соотношением и и х (пропорционален х-1 /2).
При заданном значении D это соотношение можно рассматривать как уравнение для определения совокупности точек (X, Y), образующих изолинию равных значений токсодозы. При прогнозировании размеров зоны заражения СДЯВ по токсодозе можно использовать методику РД 52.04.253—90, основанную на вышеприведенном уравнении. Порядок расчета приведен в приложении 2.2.
Оценка зон воздействия взрывных процессов. Под взрывом принято понимать широкий круг явлений, связанных с выделением за очень короткий промежуток времени большого количества энергии в ограниченном пространстве. Обычно взрывы связаны с превращениями вещества в результате химической реакции или в результате ядерных превращений. На практике чаще других встречаются следующие типы взрывов: свободный воздушный взрыв, наземный (приземный) взрыв взрыв внутри помещения (внутренний взрыв), а также взрывы больших газообразных облаков в атмосфере.
К свободным воздушным взрывам относят взрывы, происходящие на значительной высоте от поверхности земли, при этом не происходит усиления ударной волны между центром взрыва и объектом за счет отражения. Избыточное давление на фронте и длительность фазы сжатия зависят от энергии взрыва (массы С заряда ВВ), высоты центра взрыва над поверхностью Земли, условий взрыва и расстояния R от эпицентра. Параметры взрыва подчиняются законам подобия согласно следующим соотношениям:
где С1 и С2 —массы первого и второго заряда; R1 и R2 —расстояния до рассматриваемых точек.
Предыдущее соотношение можно записать в виде
где R — приведенное расстояние; С* — тротиловый эквивалент. Для воздушных взрывов на высоте Н из условий подобия имеем
где H̅ —приведенная высота.
Давление Рф (МПа) для свободно распространяющейся сферической воздушной ударной волны
,
в которой вид взрывчатого вещества учитывается тротиловым эквивалентом.
Для ядерных взрывов величина С представляет тротиловый эквивалент по ударной волне. Если обозначить Сп — полный тротиловый эквивалент, то для свободно распространяющейся в атмосфере ударной волны воздушного взрыва С=0,5Сп, а для наземного и приземного ядерных взрывов С= 2·0,5Сп.
Рис. 8.3. Волнообразование при воздушном взрыве:
Э— эпицентр взрыва; П— фронт падающей волны; О—фронт отраженной волны; Г— фронт головной ударной волны; Т— траектория тройной точки; А— зона регулярного отражения; Б — зона нерегулярного отражения
Наземные и приземные взрывы. Если взрыв происходит на поверхности Земли, то воздушная ударная волна от взрыва усиливается за счет отражения. Параметры ударной волны рассчитывают по формулам воздушного взрыва, однако величину энергии взрыва удваивают; в случае конденсированных ВВ избыточное давление взрыва можно рассчитывать по соотношению:
где Р0 — атмосферное давление, МПа; r — расстояние от центра взрыва; С — мощность заряда, кг; h — свойства поверхности, на которой происходит взрыв. Значения коэффициента h приведены ниже.
Грунт средней плотности……….. Плотные глины и суглинки……… Бетон............................................ Стальные плиты…………………. | 0,6-0,65 0,8 0,85...0,9 0.95...1.0 |
Более сложные процессы происходят при взрывах в приземных слоях атмосферы. При этих взрывах образуются сферические воздушные ударные волны, распространяющиеся в пространстве в виде области сжатия —разряжения (рис. 8.3). Фронт воздушной ударной волны характеризуется скачком давления, температуры, плотности и скорости частиц воздуха. При достижении сферической ударной волны земной поверхности она отражается от нее, что приводит к формированию отраженной волны. На некотором расстоянии от эпицентра взрыва (проекции центра взрыва на земную поверхность) фронты прямой и отраженной ударных волн сливаются, образуя головную волну, имеющую фронт, нормальный к поверхности Земли и перемещающийся вдоль ее поверхности. Область пространства, где отсутствует наложение и слияние фронтов, называется зоной регулярного отражения, а область пространства, в которой распространяется голо-вная волна,— зоной нерегулярного отражения.
С момента прихода фронта воздушной ударной волны в точку наземной поверхности давление резко повышается до максимального значения Δ Рф, а затем убывает до атмосферного Р0 и ниже его. Период повышенного избыточного давления называется фазой сжатия, а период пониженного давления —фазой разрежения.
Действие воздушной ударной волны на здания и сооружения определяется не только избыточным давлением, но и действием скоростного напора воздушных масс, величину которого можно определить по следующему соотношению:
где
Для случая нормального отражения от ограждающих и внутренних конструкций избыточное давление (МПа) на фронте отраженной ВУВ
Внутренний взрыв характеризуется тем, что нагрузка воздействует на объект изнутри. Возникающие нагрузки зависят от многих факторов:
типа взрывчатого вещества, его массы, полноты заполнения внутреннего объема помещения взрывчатым веществом, его местоположения во внутреннем объеме и т. д. Полное решение задачи определения параметров взрыва является сложной задачей, с ним можно познакомиться в специальной литературе. Ориентировочно оценку возможных последствий взрывов внутри помещения можно производить по величине избыточного давления, возникающего в объеме производственного помещения по НПБ 105—95.
Для горючих газов, паров легковоспламеняющихся и горючих жидкостей, состоящих из атомов Н, О, N, Cl, F, L, Вг, избыточное давление взрыва
где Рmax — максимальное давление взрыва стехиометричвбкой газовоздушной или паровоздушной смеси в замкнутом объеме; определяется экспериментально или по справочным данным, при отсутствии данных допускается принимать равным 900 кПа; Р0 — начальное давление, кПа; допускается принимать равным 101 кПа; mr —масса горючего газа или паров легковоспламеняющейся или горючей жидкости, поступивших в результате аварии в помещение, кг; Z—доля участия взвешенного дисперсного продукта во взрыве; ρr — плотность газа, кг/м3; Vсв—свободный объем помещения, м3; определяется как разность между объемом помещения и объемом, занимаемым технологическим оборудованием; если свободный объем помещения определить невозможно, то его принимают условно равным 80 % геометрического объема помещения; Ссr —стехиометрический коэффициент; Kн —коэффициент, учитывающий негерметичность помещения и неадиаба-тичность процесса горения; допускается принимать равным 3.
Избыточное давление взрыва для химических веществ кроме упомянутых выше, а также для смесей
(8.1)
где Hr - теплота сгорания, Дж/кг; ρсв — плотность воздуха до взрыва при начальной температуре, кг/м3; Ср — удельная теплоемкость воздуха, Дж/(кг.К); допускается принимать равной 1,01·103 Дж/(кг·К); То — начальная температура воздуха, К.
Избыточное давление взрыва для горючих пылей определяют по формуле (8.1), где при отсутствии данных коэффициент Z принимается равным 0,5.
Расчет избыточного давления взрыва для веществ и материалов, способных взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом проводят по формуле (8.1), принимая Z = 1 и в качестве величины Hr энергию, выделяющуюся при взаимодействии 1 кг вещества (с учетом сгорания продуктов взаимодействия до конечных соединений), или экспериментально в натурных испытаниях.
Расчетное избыточное давление взрыва для гибридных взрывоопасных смесей, содержащих газы (пары) и пыли,
ΔР=ΔР1 + ΔP2,
Где ΔР1 —давление взрыва, вычисленное для газа (пара); ΔP2—давление взрыва, вычисленное для пыли.
Массы mt горючего газа (массу паров жидкости или массу взвешенной в объеме помещения пыли), поступившего в результате аварии в помещения, определяют согласно НПБ 105—95 «Определение категорий помещений и зданий по взрывопожарной и пожарной опасности» или исходя из иных объективных экспертных оценок.
Взрыв (горение) газового облака. Причинами взрывов могут быть большие газовые облака, образующиеся при утечках или внезапном разрушении герметичных емкостей, трубопроводов и т. п. Процесс взрыва или горения таких газовых облаков имеет ряд специфических особенностей, что приводит к необходимости рассмотреть эти процессы отдельно. Образующиеся в атмосфере газовые облака чаще всего имеют сигарообразную форму, вытянутую по направлению ветра. Инициаторы горения или взрыва в этих случаях носят чаще всего случайный характер. Причем воспламенение не всегда сопровождается взрывом.
При плохом перемешивании газообразных веществ с атмосферным воздухом взрыва вообще не наблюдается. В этом случае при воспламенении газо- или паровоздушной смеси от места инициирования с дозвуковой скоростью будет распространяться «волна горения». Так как распространение пламени происходит со сравнительно низкой дозвуковой скоростью, в волне горения давление не повышается. В таком процессе имеет место только расширение продуктов горения за счет их нагрева в зоне пламени, и давление успевает выравняться по всему объему. Медленный режим горения облака с наружной поверхности с большим выделением лучистой энергии может привести к образованию множества очагов пожаров на промышленном объекте.
При оценке разрушительного действия взрыва газового облака в открытом пространстве необходимо определить избыточное давление (скоростной напор) во фронте пламени. Если пламя распространяется от точечного источника зажигания в неограниченном пространстве, то оно имеет форму, близкую к сфере радиуса г, который непрерывно увеличивается по закону
где и — нормальная скорость пламени; ε —степень расширения газов при сгорании; χ — коэффициент искривления фронта пламени; t — текущее значение времени, отсчитываемое от момента зажигания.
В произвольной точке М на расстоянии х от точки воспламенения скорость газа
где V0 — скорость движения фронта пламени при свободном сгорании;
v0 = (ε – 1)χu
Если в точке М расположен какой-либо объект, то на него воздействует скоростной напор
где ρ — плотность газов при нормальных условиях.
Скоростной напор достигает максимума, когда фронт пламени подходит непосредственно к данному объекту. Для пламени предельных углеводородов скоростной напор в открытом пространстве может достигать 26 кПа.
По избыточному давлению взрыва можно ориентировочно оценить степень разрушения различных видов объектов (см. приложение 3).
Оценка пожароопасных зон. Под пожаром обычно понимают неконтролируемый процесс горения, сопровождающийся уничтожением материальных ценностей и создающий опасность для жизни людей. Пожар может принимать различные формы, однако все они в конечном счете сводятся к химической реакции между горючими веществами и I кислородом воздуха (или иным видом окислительных сред), возникающей при наличии инициатора горения или в условиях самовоспламенения.
Образование пламени связано с газообразным состоянием веществ, поэтому горение жидких и твердых веществ предполагает их переход в газообразную фазу. В случае горения жидкостей этот процесс обычно заключается в простом кипении с испарением у поверхности. При горении почти всех твердых материалов образование веществ, способных улетучиваться с поверхности материала, и попадание в область пламени происходит путем химического разложения (пиролиза). Большинство пожаров связано с горением твердых материалов, хотя начальная стадия пожара может быть связана с горением жидких и газообразных горючих веществ, широко используемых в современном промышленном производстве.
При горении принято подразделять два режима: режим, в котором горючее вещество образует однородную смесь с кислородом или воздухом до начала горения (кинетическое пламя), и режим, в котором горючее и окислитель первоначально разделены, а горение протекает в области их перемешивания (диффузионное горение). За редким исключением при обширных пожарах встречается диффузионный режим горения, при котором скорость горения во многом определяется скоростью поступления в зону горения образующихся летучих горючих веществ. В случае горения твердых материалов скорость поступления летучих веществ непосредственно связана с интенсивностью теплообмена в зоне контакта пламени и твердого горючего вещества. Массовая скорость выгорания [гДм^с)] зависит от теплового потока, воспринимаемого твердым горючим, и его физико-химических свойств. В общем виде эту зависимость можно представить как:
где Qпр — тепловой поток от зоны горения к твердому горючему, кВт/м2; Qух—теплопотери твердого горючего в окружающую среду, кВт/м2; r — теплота, необходимая для образования летучих веществ, кДж/г; для жидкостей представляет собой удельную теплоту парообразования.
Тепловой поток, поступающий из зоны горения к твердому горючему, существенным образом зависит от энергии, выделенной в процессе горения, и от условий теплообмена между зоной горения и поверхностью твердого горючего. В этих условиях режим и скорость горения могут в значительной степени зависеть от физического состояния горючего вещества, его распределения в пространстве и характеристик окружающей среды.
Пожаровзрывоопасность веществ характеризуется многими параметрами: температурами воспламенения, вспышки, самовозгорания, нижним (НКПВ) и верхним (ВКПВ) концентрационными пределами воспламенения; скоростью распространения пламени, линейной и массовой (в граммах в секунду) скоростями горения и выгорания веществ.
Под воспламенением понимается возгорание (возникновение горения под воздействием источника зажигания), сопровождающееся появлением пламени. Температура воспламенения —минимальная температура вещества, при которой происходит загорание (неконтролируемое горение вне специального очага).
Температура вспышки — минимальная температура горючего вещества, при которой над его поверхностью образуются газы и пары, способные вспыхивать (вспыхивать — быстро сгорать без образования сжатых газов) в воздухе от источника зажигания (горящего или раскаленного тела, а также электрического разряда, обладающих запасом энергии и температурой, достаточными для возникновения горения вещества). Температура самовозгорания —самая низкая температура, при которой происходит резкое увеличение скорости экзотермической реакции (при отсутствии источника зажигания), заканчивающееся пламенным горением. Концентрационные пределы воспламенения — минимальная (нижний предел) и максимальная (верхний предел) концентрации, которые характеризуют области воспламенения.
Температура вспышки, самовоспламенения и воспламенения горючих жидкостей определяется экспериментально или расчетным путем согласно ГОСТ 12.1.044—89. Нижний и верхний концентрационный пределы воспламенения газов, паров и горючих пылей также.могут определяться экспериментально или расчетным путем согласно ГОСТ 12.1.041—83', ГОСТ 12.1.044—89 или руководству по «Расчету основных показателей пожаровзрывоопасности веществ и материалов».
Пожаровзрывоопасность производства определяется параметрами по-жароопасности и количеством используемых в технологических процессах материалов и веществ, конструктивными особенностями и режимами работы оборудования, наличием возможных источников зажигания и условий для быстрого распространения огня в случае пожара.
Согласно НПБ 105—95 все объекты в соответствии с характером технологического процесса по взрывопожарной и пожарной опасности подразделяются на пять категорий (табл. 8.1).
Обозначенные выше нормы не распространяются на помещения и 'здания для производства и хранения взрывчатых веществ, средств инициирования взрывчатых веществ, здания и сооружения, проектируемые по специальным нормам и правилам, утвержденным в установленном порядке.
Категории помещений и зданий, определяемые в соответствии с табл. 8.1, применяют для установления нормативных требований по обеспечению взрывопожарной и пожарной безопасности указанных зданий и сооружений в отношении планировки и застройки, этажности, площадей, размещения помещений, конструктивных решений, инженерного оборудования и т. д. 384
Таблица 8.1.
Дата публикования: 2015-07-22; Прочитано: 605 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!