Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Мультиплексоры и демультиплексоры



Мультиплексор - комбинационное цифровое устройство, которое обеспечивает передачу на единственный выход F одного из нескольких входных сигналов Dj в соответствии с поступающим адресным кодом Ai. При наличии n адресных входов можно реализовать M =2 n комбинаций адресных сигналов, каждая из которых обеспечивает выбор одного из M входов. Чаще всего используются мультиплексоры «из 4 в 1» (n =2, M =4), «из 8 в 1» (n =3, M =8), «из 16 в 1» (n =4, M =16). Правило работы мультиплексора «из 4 в 1» можно задать таблицей истинности:

Входы Выход
A 1 A 0 F
    D 0
    D 1
    D 2
    D 3

Логическое выражение для выходной функции, заданной таблицей, можно записать в виде

.

В соответствии с полученной формулой для реализации мультиплексора можно использовать логические элементы И, ИЛИ, НЕ. Синтезированная структурная схема мультиплексора показана на рис. 4.13,а, а его условное графическое обозначение – на рис. 4.13, б.

а) б)

Рис. 4.13.Структура и УГО мультиплексора «из 4 в 1».

Мультиплексирование при большом числе входов можно выполнить пирамидальным каскадированием мультиплексоров, как это показано нарис. 4.14. На рисунке показано каскадирование мультиплексоров «из 4 в 1» для реализации функции мультиплексирования «из 16 в 1».

Рис. 4.14.Пирамидальное каскадирование мультиплексоров.

Мультиплексоры первого уровня управляются адресными сигналами А 0 и А 1, а мультиплексоры второго – адресными сигналами А 2 и А 3. Каждый из мультиплексоров первого уровня выбирает один из четырех разрядов Dj. Первый мультиплексор выбирает один из разрядов D 0D 3, второй мультиплексор – один из разрядов D 4D 7 и т.д. Выходы с мультиплексоров первого уровня объединяются в мультиплексоре второго уровня, который осуществляет окончательную коммутацию и формирование выходного сигнала F.

Мультиплексор можно реализовать, используя дешифратор и схемы И и ИЛИ (рис. 4.15). Дешифратор формирует логическую единицу на одном из выходов согласно входному двоичному коду. Сигналы с выходов дешифратора являются стробирующими, т.е. разрешающими сигналами для схемы совпадения единиц, реализованной на двухвходовых элементах И. Логическая единица будет формироваться на выходе только того элемента И, на один вход которого подается единица с выхода дешифратора и на второй вход – единица с соответствующего входа Dj. Для объединения выходов всех элементов И в один выход F, служит элемент ИЛИ. На его выходе формируется логическая единица, если таковая присутствует на опрашиваемом в данный момент входе Dj.

Рис. 4.15. Реализация мультиплексора на базе дешифратора.

Демультиплексор выполняет функцию, обратную мультиплексору, т.е. в соответствии с принятой адресацией Ai направляет информацию с единственного входа D на один из M выходов Fj. При этом на остальных выходах будут логические нули (единицы). Принцип работы демультиплексора «из 1 в 4» иллюстрируется таблицей истинности:

Входы Выходы
A 1 A 0 F 3 F 2 F 1 F 0
          D
        D  
      D    
    D      

Логические выражения для каждого из выходов можно представить в виде:

.

Структурная схема, реализующая демультиплексор «из 1 в 4» приведена на рис. 4.16, а, а его условное графическое обозначение – на рис. 4.16, б.

Как и в случае мультиплексора, схему демультиплексора можно реализовать с помощью дешифратора. Действительно, ФАЛ демультиплексора отличается от ФАЛ дешифратора только наличием входного сигнала D в конъюнкциях с адресными входами. Следовательно, объединив выходы дешифратора с входом D с помощью стробирующих элементов И, можно получить демультиплексор (рис. 4.17). Мультиплексоры и демультиплексоры часто называют еще цифровыми коммутаторами.

а) б)

Рис. 4.16. Структурная схема и УГО демультиплексора «из 1 в 4».

Рис. 4.17.Реализация демультирлексора на базе дешифратора.

Параметрический стабилизатор напряжения - это устройство, в котором стабилизация выходного напряжения достигается за счет сильной нелинейности вольт-амперной характеристики электронных компонентов, использованных для построения стабилизатора (т.е. за счет внутренних свойств электронных компонентов, без построения специальной системы регулирования напряжения).

Для построения параметрических стабилизаторов напряжения обычно используются стабилитроны, стабисторы и транзисторы.

Из-за низкого КПД такие стабилизаторы находят применение в основном в слаботочных схемах (с нагрузками до нескольких десятков миллиампер). Наиболее часто они используются как источники опорного напряжения (например, в схемах компенсационных стабилизаторов напряжения).

Параметрические стабилизаторы напряжения бывают однокаскадными, многокаскадными и мостовыми.

Рассмотрим простейший параметрический стабилизатор напряжения, построенный на основе стабилитрона (схема приведена ниже):

Iст - ток через стабилитрон

Iн - ток нагрузки

Uвых=Uст - выходное стабилизированное напряжение

Uвх - входное нестабилизированное напряжение

R0 - балластный (ограничительный, гасящий) резистор

Работа стабилизатора основана на том свойстве стабилитрона, что на рабочем участке вольт-амперной характеристики (от Iст min до Iст max) напряжение на стабилитроне практически не изменяется (на самом деле конечно изменяется от Uст min до Uст max, но можно считать, что Uст min = Uст max = Uст).

В приведенной схеме, при изменении входного напряжения или тока нагрузки - напряжение на нагрузке практически не меняется (оно остаётся таким же, как и на стабилитроне), вместо этого изменяется ток через стабилитрон (в случае изменения входного напряжения и ток через балластный резистор тоже). То есть, излишки входного напряжения гасятся балластным резистором, величина падения напряжения на этом резисторе зависит от тока через него, а ток через него зависит в том числе от тока через стабилитрон, и таким образом, получается, что изменение тока через стабилитрон регулирует величину падения напряжения на балластном резисторе.

единственный плюс такого стабилизатора - это его простота, тем не менее, как я уже говорил, такие стабилизаторы вполне себе существуют и даже находят активное применение в качестве источников опорного напряжения для более сложных схем

параметрический стабилизатор напряжения на стабилитроне применяется в слаботочных устройствах (несколько миллиампер) и представляет собой делитель напряжения (на резисторе R – балластный резистор и стабилитроне VD – который выполняет роль второго резистора) на вход которого подается нестабильное напряжение а выходное напряжение снимается с нижнего плеча делителя. При повышении (понижении) входного напряжения внутреннее сопротивление стабилитрона уменьшается (увеличивается), что позволяет удерживать выходное напряжение на заданном уровне. На балластном резисторе падает разница между входным напряжением питания и напряжением стабилизации стабилитрона..

Для нормальной работы схемы ток через стабилитрон должен в несколько раз (3-10 раз) превышать ток в стабилизируемой нагрузке. Практически, так-как номинальный ток стабилизации стабилитрона в несколько раз меньше максимального, то допускается при расчетах считать, что ток нагрузки не должен превышать номинального тока стабилизации.





Дата публикования: 2015-07-22; Прочитано: 4355 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...