Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Электрохимическая коррозия. Строго отделить химическую коррозию от электрохимической трудно, а иногда и невозможно



Строго отделить химическую коррозию от электрохимической трудно, а иногда и невозможно. Дело в том, что электрохимическая коррозия часто связана с наличием в металле случайных примесей или специально введенных легирующих добавок.

Рассмотрим в качестве примера реакцию взаимодействия цинка с серной кислотой:

Zn + H2SO4 = ZnSO4 + H2,

В обычных для нас условиях этот процесс идет достаточно медленно. При добавлении в раствор нужно немного сульфата меди (П) (медного купороса) на поверхности цинка выделится медь

CuSO4 + Zn = ZnSO4 + Cu

и водород начнет бурно выделяться. При объяснении данного явления в 1830 г. швейцарским химиком А. де-ля Ривом была создана первая электрохимическая теория коррозии. При взаимодействии скоррозионной средой двух металлов, находящихся в контакте возникает микрогалванический элемент или микрогальванопара:

А(-) Zn/ H2SO4 /Cu (+) К

Анодный процесс Zn – 2e- = Zn2+

Катодный процесс 2H+ + 2 е = H2

Коррозия является электрохимической, если при выходе из металлической решётки образующийся катион вступает в связь не с окислителем, а с другими компонентами коррозионной среды; окислителю же передаются электроны, освобождающиеся при образовании катиона. При этом скорость коррозии резко возрастает, поскольку процессы окисления и восстановления оказываются пространственно разделенными и не мешают друг другу. ВА нашем примере восстановление водорода происходит на меди.

Таким образом, при электрохимической К. удаление атома из металлической решётки (что составляет суть любого коррозионного процесса) осуществляется в результате двух независимых, но сопряжённых, связанных между собой электрическим балансом, электрохимических процессов: анодного — переход сольватируемых катионов металла в раствор, и катодного — связывание окислителем освобождающихся электронов. Отсюда следует, что процесс электрохимической коррозии можно замедлить не только путём непосредственного торможения анодного процесса, но также воздействуя на скорость катодного.

Проводимость металла очень высока, и при возникновении избыточного заряда электроны практически мгновенно перераспределяются, так что плотность заряда и электрического потенциал металла меняются одновременно по всей его поверхности независимо от того, в каких её точках электроны освободились после ухода катионов, а в каких захватываются окислителем. В частности, это означает, что от мест, где преимущественно осуществляется анодная реакция, электроны перемещаются в металле к местам протекания катодной. Соответственно раствор вблизи анодных участков принимает избыточный положительный заряд растворившихся катионов, а вблизи катодных заряжается отрицательно в результате захвата электронов растворённым окислителем. В растворе эти заряды не перераспределяются так легко, как в металле. Поэтому с повышением скорости процесса потенциал раствора в непосредственной близости от анодных участков становится всё более положительным, что затрудняет дальнейший выход из металла положительно заряженных катионов, а вблизи катодных участков — более отрицательным, что затрудняет катодный процесс. Иначе это можно представить, как вызванное протеканием тока омическое падение напряжения между прианодным и прикатодным слоями раствора, с учётом которого потенциал металла по отношению к прианодному слою оказывается несколько более отрицательным, а по отношению к прикатодному — более положительным, чем по отношению к объёму раствора. В случаях, когда такое омическое падение напряжения велико (очень высокая плотность тока, низкая электрическая проводимость раствора, большое взаимное удаление катодных и анодных участков), коррозионную систему удобнее представить в виде системы короткозамкнутых микро- или макрогальванических элементов. В остальных случаях при определении средней по площади скорости растворения металла современная теория наряду с такой моделью позволяет также представлять электрохимически гетерогенную поверхность как квазигомогенную. Тогда ей приписывают удельные анодные и катодные характеристики, равные интегрально усреднённым по площади значениям одноимённых характеристик моделируемой гетерогенной поверхности.

Наиболее распространены два катодных процесса: разряд водородных ионов
(2H+ + 2 е - = H2) и восстановление растворённого кислорода (4 e +O2+4H+ = 2H2O или 4 e- +O2+2H2O = 4ОН-), которые часто называют соответственно водородной и кислородной деполяризацией.





Дата публикования: 2015-07-22; Прочитано: 1302 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...