Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Наивный подход



Казалось бы, оценить параметры можно из элементарного здравого смысла. Оценку наклона прямой регрессии получим, поделив приращение при переходе от x1 =-1 к x3=+1 на , а оценку значения найдем как среднее арифметическое:

Легко проверить, что математические ожидания оценок равны (оценки несмещенные).

После того как оценки получены, H0 проверяют как обычно с помощью хи-квадрат критерия Пирсона:

Оценки ожидаемых частот можно получить, исходя из оценок :

При этом, если наши оценки ”правильные”, то расстояние Пирсона будет распределено как случайная величина хи-квадрат с одной степенью свободы: 3-2=1. Напомним, что мы оцениваем два параметра, подгоняя данные под нашу модель. При этом сумма не фиксирована, поэтому дополнительную единицу вычитать не нужно.

Однако, подставив , получим странный результат:

С одной стороны, ясно, что для данных частот нет оснований отвергать H0, но мы не в состоянии это проверить с помощью хи-квадрат критерия, так как оценка ожидаемой частоты в первой точке оказывается отрицательной. Итак, найденные из “здравого смысла” оценки не позволяют решить задачу в общем случае.





Дата публикования: 2015-07-22; Прочитано: 139 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...