Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Доступное богам недоступно людям



В одной из интернетных статей о различных странных находках, связанных с древней добычей металлов, сообщается, что в 1940 году геологическая экспедиция под руководством Николая Порфирьевича Ермакова обнаружила в труднодоступных отрогах Памира горизонтальный штрек с разветвлениями длиной около 150 метров.

«О его местонахождении геологам сообщили местные жители. В древней выработке добывали минерал шеелит – руду вольфрама. По длине сталагмитов и сталактитов, которые образовались в штреке, геологи установили приблизительное время горной выработки – 12-15 тысяч лет до нашей эры. Кому понадобился в каменном веке этот тугоплавкий металл с температурой плавления 3380°C, неизвестно».

Рис. 176. Шеелит

Шеелит – минерал вольфрамата кальция CaWO4. Это не только источник вольфрама. Он используется и в ювелирном деле, а кристаллы шеелита ценятся коллекционерами. И конечно, этот минерал мог привлечь внимание первобытного человека, который пустил бы его на украшения. Но ради только материала для украшений пробивать штрек в 150 метров (да еще и в труднодоступном горном районе) он явно бы не стал. Это выходит за все пределы разумной логики. Так что приходится принять мысль о добыче шеелита именно в качестве источника вольфрама.

Правда, температура плавления вольфрама тут не причем, поскольку ради получения этого металла из руды никто шеелит до таких температур не нагревает. Современный процесс извлечения вольфрама из шеелита гораздо сложнее простой плавки руды и состоит из нескольких стадий.

На первом этапе шеелитовую руду обогащают флотацией в жирных кислотах. Флотация – один из основных методов обогащения полезных ископаемых, который основан на различии степени смачиваемости частиц породы в разных жидкостях. При этом шеелит считается труднообогатимым минералом.

Полученный таким образом концентрат разлагают в автоклавах раствором соды при 180-200°С (получают технический раствор вольфрамата натрия) или соляной кислотой (получают техническую вольфрамовую кислоту). Затем раствор высушивается (иногда предварительно производится дополнительное растворение в аммиаке), а получившиеся соли прокаливают. В итоге всех этих процедур получается триоксид вольфрама WO3.

Для получения чистого вольфрама его триоксид WO3 восстанавливают до металлического порошка в водородной атмосфере при температуре около 700°C. Далее настает черед методов порошковой металлургии.

Полученный порошок вольфрама прессуют высоким давлением, а затем спекают в атмосфере водорода при температуре 1200-1300°C. После этого в специальных аппаратах пропускают через спрессованный порошок электрический ток. Металл нагревается до 3000°C, при этом происходит его спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

Рис. 177. Металлический вольфрам

Трудно себе представить, что всю эту процедуру каким-то образом мог проделать человек каменного или даже бронзового века. Да и что бы он потом делал с металлическим вольфрамом?..

Лампочки с вольфрамовыми нитями ему точно были ни к чему – электричества еще не было. Да и другие области современного применения этого металла никак не пересекаются с интересами древнего человека.

Из сплавов, содержащих вольфрам или его карбиды, изготовляют танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей. Сплав вольфрама, никеля и меди служит для изготовления контейнеров, в которых хранят радиоактивные вещества, поскольку его защитное действие на 40% выше, чем у свинца. Вольфрам – непременная составная часть лучших марок инструментальной стали. В целом ныне почти 95% всего добываемого вольфрама поглощает именно производство подобных сплавов.

В последние годы важное практическое значение приобрели химические соединения вольфрама. В частности, раствор вольфрамата натрия Na2WO4 придает тканям огнестойкость и водонепроницаемость, а вольфраматы щелочноземельных металлов, кадмия и редкоземельных элементов применяются при изготовлении лазеров и светящихся красок.

Рис. 178. Электрическая лампочка в каменном веке бесполезна

Все указывает на то, что добыча шеелита нужна была богам – представителям высоко развитой цивилизации. Но тогда, на первый взгляд, получается, что боги либо обладали, находясь на Земле, необходимым для получения вольфрама оборудованием (что противоречит описанной ранее гипотезе Ситчина), либо вывозили шеелит в «сыром» виде (то есть в виде руды) куда-то за пределы нашей планеты и там уже добывали из него вольфрам (что выглядит по меньшей мере нерациональным решением)…

Так бы и остались шеелитовые рудники непонятной загадкой, если бы (уже на стадии работы над данной книгой) мой знакомый из Санкт Петербурга, Сергей Викторович Дигонский, не прислал мне свою монографию под названием «Газофазные процессы синтеза и спекания тугоплавких веществ». Из этой монографии следует, что можно извлекать тугоплавкий вольфрам из шеелита даже… в тех примитивных печах, которые использовались еще в самых древних металлургических центрах!

Дело в том, что в вышеописанных древних металлургических процессах металл получается его восстановлением из оксидов, содержащихся в руде, а в роли восстановителя выступает окись углерода СО, получаемая из древесного угля. Однако и в руде, и даже в древесном угле неизбежно имеется какое-то количество воды. И уже при температурах 700-800оС вода в присутствии углерода начинает разлагаться в соответствии со следующей реакцией:

H2O + C → H2 + CO

А водород – очень сильный восстановитель (более сильный, чем окись углерода СО), и он активно включается в химические реакции с оксидами металлов, в результате чего можно получить чистый металл по реакции:

MeO + H2 → Me + H2O

В такой биреакционной (то есть состоящей из двух реакций) схеме с воды процесс начинается и водой же заканчивается. Образовавшаяся в итоге вода вновь вступает в реакцию с углеродом и так далее…

Суммарно же схему условно можно представить следующей реакцией:

MeO + C → Me + CO

Любопытно, что при такой биреакционной схеме не требуется даже доводить металл до расплавленного состояния – он восстанавливается, оставаясь в твердой фазе. Все необходимое делает мобильный и подвижный водород, передвигаясь в пространстве между частичками шихты.

Но эта мобильность создает и проблему – при обычной тигельной плавке водород быстро покидает зону реакции, улетучиваясь вместе с другими газообразными продуктами. И для того, чтобы восстановление металла проходило по указанной биреакционной схеме, нужно не дать водороду улетучиться.

В опытах, представленных в монографии Дигонского, данная проблема решалась за счет того, что реакция проводилась в закрытой куполообразной печи-реакторе. И опыты дали поразительные результаты.

«…были проведены эксперименты по пирометаллургическому разделению оксидов вольфрама и кальция, связанных в шеелите. Опыты по прямому восстановлению шеелитового концентрата нефтяным коксом осуществлялись при температуре 1100-1150оС в течение 1 часа. Этого …было недостаточно для восстановления оксида вольфрама до металла, но образовавшийся в вышеуказанных условиях спекшийся продукт состоял из двух частей, причем нижняя часть представляла собой спек нерудных оксидов, а верхняя часть была полностью представлена коричнево-бурым WO2, восстановленным по реакции:

CaWO4 + H2 → WO2 + CaO + H2O

При увеличении длительности процесса шеелит восстанавливался до металлического вольфрама [см. Рис. 179 ], образующего смесь с оксидом кальция» (С.Дигонский, «Газофазные процессы синтеза и спекания тугоплавких веществ»).

Рис. 179. Порошок металлического вольфрама, полученный из шеелитового концентрата

Температура 1100-1150оС вполне достижима в древней металлургической печи. Более того – это ее обычный температурный режим. Вместо нефтяного кокса в качестве источника углерода вполне можно использовать древесный уголь. Вода есть и в руде, и в древесном угле, но можно при необходимости ее и добавить (хотя Дигонский уверил меня, что этого и не потребуется – воды итак будет хватать для получения достаточного количества водорода).

Нужно лишь предотвратить выход водорода из зоны реакции, а для этого можно просто плотно замазать глиной горлышко керамического горшка (который выступает в роли тигля) и… перевернуть его вверх дном. Все – водород уже никуда не денется и будет оставаться в зоне реакции…

Однако нет никаких признаков того, чтобы люди были знакомы с таким простым приемом. Во-первых, на всех древних изображениях, связанных с металлургическими процессами, тигли изображены в обычном, а не в перевернутом положении. А во-вторых, если бы этот прием был известен, он в том или ином виде скорее всего сохранился бы в металлургической традиции. Между тем биреакционная схема была предложена лишь в ХХ веке.

С другой стороны, боги, которые смогли приспособиться к отсутствию сложного оборудования, используя для получения бронзы примитивные печи, вполне могли использовать те же самые печи для получения вольфрама из шеелита по биреакционной схеме. Знаний у них вполне должно было на это хватить.

И вот, что любопытно. В Древнем Египте довольно широко была распространена традиция изготовления сосудов с круглым или закругленным дном (позднее такую форму дна имели некоторые древнегреческие амфоры). Такое дно абсолютно нелогично для обычного сосуда – сосуд опрокидывается на плоской поверхности, и нужно ставить его в специальные подставки либо в ямки в земле. Зато подобная форма совершенно логична и наиболее функциональна для тиглей, которые необходимо переворачивать вверх дном, то есть для получения металлов по биреакционной схеме.

Эти сосуды египтологи относят к так называемой ритуальной посуде, полагая, что они не использовались в быту. Но «ритуальность» связана с богами, так что сосуды и предназначались богам!..

Выходит, что боги как раз не только знали, но и использовали описанный выше прием, позволяющий получать в примитивных печах и тугоплавкие металлы. Знали, использовали, но людям это знание не передали…

Рис. 180. Ритуальные сосуды с закругленным дном (Элефантина, Египет)

В монографии Дигонского приводится описания еще одного ряда, на мой взгляд, весьма любопытных экспериментов. Дело в том, что для этих же условий возможно не только восстановление металла, но и образование его карбидов – соединений металла с углеродом по реакции:

Me + C → MeC

Для этого, например, диоксид титана TiO2 нагревался в описанных ранее условиях до температуры всего 1280оС.

«Рентгенограмма полученного спека установила наличие в нем включений не только карбида титана TiC, но и металлического титана. Микрозондовое исследование образцов подтвердило, что TiO2 частично восстановился до карбида титана TiC. По результатам эксперимента можно говорить не только о том, что температуру получения карбида титана удалось в куполообразном устройстве снизить на 500-700оС, но и о том, что впервые карботермическим восстановлением диоксида титана был получен элементарный титан» (С.Дигонский, «Газофазные процессы синтеза и спекания тугоплавких веществ»).

Аналогичные результаты были получены в опытах с диоксидом циркония ZrO2.

«В результате опыта шихта, состоящая из порошка ZrO2, спеклась в прочный монолит, насыщенный по всему объему образца блестящими включениями [см. Рис. 181]. Микрозондовое исследование образца подтвердило наличие в нем карбида циркония. Рентгенограмма полученного образца показала наличие в нем не только карбида циркония ZrC0,7, но и металлического циркония» (С.Дигонский, «Газофазные процессы синтеза и спекания тугоплавких веществ»).

Рис. 181. Спек диоксида и карбида циркония

Карбиды металлов часто используют в качестве абразивов из-за их высокой твердости. Абразивы же, в частности, у современных пил выполняют режущую функцию при обработке твердых пород камня. Так что боги даже при полном отсутствии специального оборудования вполне могли получать необходимые материалы для починки своих инструментов. Только людям давать подобное знание было ни к чему. И боги явно сознательно дали «говорящим мартышкам» лишь те технологии, которые сами сочли возможным дать.





Дата публикования: 2015-07-22; Прочитано: 652 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...