Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Жизненные формы дрожжей



Специализация на выполнении неодинаковых функций приводит у разных групп дрожжевых грибов к формированию характерного комплекса морфологических и физиологических свойств. Это дает возможность говорить о различных жизненных формах дрожжей. В общей экологии термином «жизненная форма» обозначается внешний облик, определенный морфологический тип организма, сформировавшиеся в результате приспособления к определенной среде обитания. Как уже отмечалось, дрожжи в современном понимании представляют собой определенную жизненную форму грибов. У микроорганизмов приспособления носят в основном физиологический характер, и при выделении таких экологических групп необходимо учитывать физиологические характеристики, поэтому правильнее говорить не о жизненных формах, а о морфо-физиологических группах. Среди дрожжей можно выделять следующие жизненные формы:

· Сахаробионты - «настоящие» дрожжи, наиболее типичным представителем которых является Saccharomyces cerevisiae. Они обладают комплексом свойств, свидетельствующим об их приспособленности к существованию в средах, обогащенных легкодоступными источниками углерода. Отсутствие пигментации, развитых мицелиальных структур, хламидоспор, слизистых капсул, а также способность к более или менее интенсивному брожению и узкий спектр усваиваемых соединений углерода - характерный набор свойств этих дрожжей. Кроме сахаромицетов к сахаробионтам следует относить представителей родов Debaryomyces, Kluyveromyces, Torulaspora, Zygosaccharomyces, а также большинство видов из родов Pichia и Candida.

· Фитобионты - адаптированы к обитанию на поверхности живых частей растений и, как правило, образуют каротиноидные пигменты. Они часто имеют в цикле развития хламидоспоры или хламидоспороподобные клетки, устойчивые к высушиванию. Характерный признак многих видов - образование баллистоспор, рассеивающихся токами воздуха. Наиболее типичные представители фитобионтов - роды Sporobolomyces и Sporidiobolus, некоторые виды родов Rhodotorula и Cryptococcus.

· Сапробионты обладают относительно высокой гидролитической активностью и принимают участие в деструкции растительных остатков на средних и поздних стадиях. К типичным сапробионтам относятся некоторые виды рода Trichosporon, Cystofilobasidium capitatum, группа несовершенных видов базидиомицетового аффинитета, классифицируемых в роде Cryptococcus (Cryptococcus podzolicus, Cryptococcus humicolus).

· Педобионты - дрожжи, наиболее приспособленные к обитанию на твердых поверхностях почвенных частиц. Они обладают слизистыми капсулами, которые создают межклеточную среду, сохраняющую благоприятный режим влагообмена и питания в условиях временного иссушения почвы. Эти дрожжи способны накапливать большое количество запасных веществ, главным образом в форме липидов, которые обеспечивают переживание длительных периодов голодания. Для них также характерна способность к усвоению соединений азота в очень низкой концентрации. Типичные представители педобионтов - все виды липомицетов. По-видимому, к педобионтам можно также отнести некоторые виды криптококков, в частности Cryptococcus terreus, Cryptococcus aerius, Cryptococcus terricola.

акроморфологические признаки очень изменчивы и сильно зависят от состава среды и условий культивирования, поэтому они имеют весьма ограниченное значение в систематике дрожжей.. Дрожжевые культуры, растущие на плотных средах, по консистенции бывают чаще всего пастообразными, а также слизистыми, иногда полностью стекающими на дно пробирки, вязкими, клейкими, кожистыми или крошащимися. Слизистый рост характерен для многих анаморфных базидиомицетовых дрожжей родов Cryptococcus (см. приложение 4), Rhodotorula (см. приложение 5), Sporobolomyces, образующих большое количество внеклеточных полисахаридов, а также для аскомицетовых почвенных дрожжей рода Lipomyces (см. приложение 6). У большинства аскомицетовых дрожжей колонии пастообразные, сухие, культура при росте на скошенном агаре не стекает на дно пробирки. Для дрожжеподобных грибов, образующих как одиночные клетки, так и мицелий, характерны колонии с ворсинчатым краем, который хорошо просматривается при просвечивании. У большинства дрожжей колонии белые, часто приобретающие при старении кремовый или слегка коричневатый оттенок. У некоторых аскоспоровых дрожжей, например из рода Lipomyces, старые колонии при обильном спорообразовании темнеют и становятся бурыми или шоколадными. Многие дрожжи образуют пигменты, окрашивающие их колонии в различные цвета. Наличие каротиноидных пигментов, придающих колониям красную, розовую, оранжевую или желтую окраску, характерно для базидиомицетовых дрожжей родов Rhodotorula, Sporobolomyces и др. Аскомицетовые дрожжи Metschnikowia pulcherrima образуют диффундирующий в среду красно-вишневый пигмент пульхерримин. Так называемые «черные дрожжи», формируют темно бурые или черные колонии за счет накопления меланоидных пигментов. Микроморфология дрожжей включает признаки, характеризующие отдельные клетки (форма, размеры), а также способы вегетативного и бесполого размножения и образуемые при этом структуры.. Морфогенез дрожжевой клетки тесно связан со способом вегетативного размножения. Различают два принципиально различных способа образования вегетативных клеток у дрожжей - артрический (талломный) и бластический (зародышевый). При артрическом способе мицелий дрожжеподобных грибов одновременно распадается на отдельные одноклеточные элементы - артроспоры. Они образуются за счет расчленения гифы по поперечным септам после разрушения первичной стенки гифы в местах сочленения. Такой способ вегетативного размножения характерен для дрожжеподобных грибов Endomyces, Galactomyces, Arxula, Trichosporon, причем у двух последних родов образование артроспор сопряжено с их последующим почкованием. Бластический тип вегетативного размножения - это образование почек, что наиболее характерно для дрожжей. Почка представляет собой вырост на материнской клетке, который по мере увеличения в размерах отшнуровывается от нее. На материнской клетке при этом остается шрам почкования, а на отделившейся почке - шрам рождения. Шрамы почкования, или почечные рубцы, сохраняются на материнской клетке весь период ее жизни, а шрамы рождения со временем становятся малозаметными. Форма дрожжевых клеток довольно разнообразна (см. приложение 7) и этот признак тесно связан со способом почкования. У видов, размножающихся многосторонним почкованием, клетки имеют сферическую, округлую, овальную или яйцевидную форму. При биполярном почковании клетки приобретают апикулятную (лимоновидную) или грушевидную форму. У делящихся дрожжей клетки более или менее цилиндрические. Специфическую угловатую форму имеют клетки дрожжей рода Trigonopsis, серповидную - Metschnikowia lunata. Клетки дрожжей, образующие почки на стеригмах, зачастую приобретают форму, делающую их похожими на простекобактерии. У многих видов дрожжей в определенных условиях роста материнские и дочерние клетки после почкования не разъединяются, а продолжают почковаться. В результате возникают структуры, имитирующие мицелий. Такой мицелий называют ложным, или псевдомицелием (см. приложение 8). В отличие от истинного (септированного) мицелия, в нитях псевдомицелия между клетками обычно хорошо заметны перетяжки, а апикальные (концевые) клетки всегда короче предшествующих. Псевдомицелий, состоящий только из клеток одного типа, сходных по форме и размерам, называют примитивным (рудиментарным). Сложный псевдомицелий состоит из клеток более чем одного типа, обычно в нем резко различаются длинные клетки, составляющие псевдогифы, и расположенные на них одиночные или собранные гроздьями круглые, овальные или клиновидные почки, которые в этом случае называются бластоспорами (см. приложение 9). Образование псевдомицелия характерно для многих аскомицетовых дрожжей, например из родов Candida, Pichia.

Питательной среды, условий культивирования дрожжей и их физиологических особенностей. Средний элементарный состав дрожжевых клеток (в %): углерод 47, водород 6,5, кислород 31, азот 7,5—10, фосфор 1,6—3,5. Содержание других элементов незначительно: кальция 0,3—0,8%, калия 1,5—2,5, магния 0,1—0,4, натрия 0,06—0,2, серы 0,2%. В дрожжах найдены микроэлементы (в мг/кг): железо 90—350, медь 20—135, цинк 100—160, молибден 15—65.

Дрожжи в отпрессованном виде содержат 68—76% воды и 32 — 24% сухого вещества. Внутриклеточной влаги в зависимости от со стояния коллоидов дрожжевой клетки содержится 46—53% и меж­клеточной 22-27%. При изменении общей влажности дрожжей меняется соотношение между количеством внутриклеточной и меж­клеточной влаги. Удаление 85% воды из дрожжей при температуре не выше 50°С почти не влияет на их жизнеспособность.

Сухие вещества дрожжей включают 23—28% органических ве­ществ и 5—7% золы. Органические вещества состоят из 13—14% белка, 6—8% гликогена, 1,8—2% целлюлозы и 0,5—2% жира.

Белок. Дрожжи содержат в среднем 50% «сырого» белка в пересчете на сухие вещества и около 45% истинного белка. В состав сырого белка входят все соединения азота, к которым относятся производные нуклеиновых кислот — пуриновые и пиримидиновые основания, азот свободных аминокислот.

Гликоген. При отсутствии питательных веществ в среде гликоген дрожжевой клетки превращается в спирт и диоксид углерода.

Трегалоза. Наряду с гликогеном содержится трегалоза — очень мобильный резервный углевод, обусловливающий стойкость хлебопекарных дрожжей. Содержание трегалозы возрастает с уменьшением азота и при рН ниже 4,5.

Жир. В состав жира входят в основном олеиновая, линолиновая и пальмитиновая кислоты. Он содержит 30—40% фосфатидов.

Зола. Зола состоит из следующих основных окислов (в %): Р2О5 — 25—60, К2О — 23—40, СаО — 1—8, МgО — 4—6, Nа2О — 0,5—2, SО3 — 0,5—6, 5Ю2 — 1—2, Ре2О3 — 0,05—0,7.

Фосфор. Фосфор содержится преимущественно в виде органических и неорганических орто-, пиро- и метафосфатов. Они входят в состав молекул нуклеиновых кислот, фосфолипидов и коферментов типа аденозинфосфата и тиамина. Так, ядерное вещество клетки (нуклеопротеиды) содержит фосфор в видеортофосфата. В виде ортофосфата фосфор входит также в состав флавиновых ферментов; в виде пирофосфата — во многие коферменты (кодегидразы Кох и Коц, карбоксилазы), В виде различных соединений фосфор принимает важное участие в энергетических процессах клетки.

Сера. Сера входит в состав очень важных соединений — амино­кислот (цистеин, цистин, метионин и глютатион) и витаминов (биотин, аневрин). В ферментах сера находится в виде сульфидных и тиоловых групп.

Железо. Железо содержится в цитохромах, цитохром-оксидазе, пероксидазе, каталазе и других ферментах, участвующих в процессе дыхания. Оно участвует в работе других ферментов (зимогеназа, пирофосфатаза).

Магний. Магний активирует действие многих фосфатаз и энолазы. Ионы магния влияют на сохранение активности ферментов при нагревании. Магний и марганец ускоряют потребление дрожжами глюкозы. Влияние магния тем сильнее, чем ниже концентра­ция глюкозы в среде. Питательные среды должны содержать 0,02-0,05% магния в виде сульфата. Процессы брожения регулируются изменением концентрации ионов магния в результате присоединения его к органическим веществам.
Калий. Калий необходим не только как питательный элемент, но и как стимулятор размножения дрожжей. Стимулирующее действие объясняется его существенной ролью в окислительном фосфорилпровании и в процессах гликолиза. Движение неорганического фосфора внутрь клетки специфично стимулируется калием. Калий активирует дрожжевую альдолазу, необходим для действия фермента пируваткарбоксилазы и влияет, так же как азот и сера, на липидный обмен дрожжевых клеток.

Кальций. Кальций играет роль активатора в микробной клетке и обнаруживается в ней как в свободной форме, так и в связанной с протеинами, углеводами и липидами. Ионы Са2+ могут связываться с АТФ наряду с Мg2+ и Мn2+. Кальций является кофактором транскетолазы хлебопекарных дрожжей и ингибитором некоторых ферментов, например пирофосфатазы, энолазы и адено-зинтрифосфатазы. Повышенное содержание солей кальция угнетает размножение дрожжей, снижает накопление в них гликогена и повышает содержание стеринов. Так, при содержании Са2+ до 40 мг на 1 л среды стимулируется размножение дрожжей, при большем оно угнетается.

Микроэлементы. Микроэлементы также имеют важное значение для размножения и жизнедеятельности дрожжей, входя в со­став ферментов, витаминов и других соединений, участвующих в их синтезе. Они влияют на скорость и характер различных биохимических процессов. Например, кобальт стимулирует размножение дрожжей, повышает содержание в клетках азотистых веществ небелковой природы, прежде всего ДНК, РНК и свободных амино­кислот. Он стимулирует также синтез витаминов — рибофлавина и аскорбиновой кислоты. Стимулирующее действие микроэлементов объясняется тем, что они образуют с ферментами металлорганические и внутрикомплексные соединения. Получаемый эффект зависит от прочности связи фермента с молекулой субстрата или активации субстрата в промежуточном активном комплексе.

Витамины и другие факторы роста дрожжей. Для нормального развития и спиртового брожения дрожжи нуждаются в витаминах, которые являются кофакторами многих ферментов. Дрожжи (сахаромицеты) в большей или меньшей мере могут синтезировать все витамины, за исключением биотина, который должен обязательно содержаться в питательной среде.

Ненасыщенные жирные кислоты с 18 атомами углерода, особенно олеиновая, также являются важными ростовыми факторами. Стимулирующее влияние олеиновой кислоты наблюдается только при малой ее концентрации, не превышающей 0,5 мг/мл. При увеличении концентрации рост дрожжей намного замедляется.

21.Вирусы: химический состав, строение, формы, значение

22. Отличие вирусов от бактерий.

Вирус необычно прост, если его сопоставить с клеткой. Сравним объем генетической информации, содержащейся в вирусе полиомиелита, с объемом генетической информации, содержащейся в клетке млекопитающего, а чтобы упростить расчеты, будем считать, что объем информации пропорционален молекулярной массе или просто массе нуклеиновой кислоты, то есть генома соответственно вируса или клетки.

Масса генома вируса 5 • 10-15 миллиграмма.
Масса генома клетки 5 • 10-9 миллиграмма.

Это означает, что среднего размера вирус содержит лишь одну миллионную долю генетической информации, которую вмещает клетка. А ведь вирус полиомиелита не самый мелкий в царстве вирусов, есть и поменьше! Как это ни странно, при встрече столь примитивного существа, как вирус, со столь сложной системой, как клетка, победа нередко остается за вирусом.

Но вирус совсем не прост, если сравнить его с рядом полимеров.

Молекулярная масса генома наиболее мелких вирусов не превышает одного миллиона. Можно назвать немало искусственных полимеров с большей молекулярной массой. Однако все эти синтетические полимеры, несмотря на громадные (относительно!) размеры, — мертвая материя, тогда как в молекуле вирусной нуклеиновой кислоты— даже в самой мелкой — заложена информация, как надо жить и воспроизводить себе подобных. При таком сравнении вирус — или даже его генетический аппарат — представляется необычайно сложным по сравнению с самыми сложными и гигантскими химическими молекулами и надмолекулярными образованиями — полимерами.

Из чего состоят и как устроены вирусы?

Наиболее простые из них состоят из двух биологических полимеров — нуклеиновых кислот и белков.

Нуклеиновая кислота, является генетическим веществом - геномом вируса. Нуклеиновая кислота представляет собой линейный полимер, состоящий из чередующихся остатков более простых соединений — нуклеотидов. В свою очередь, иуклеотиды являются соединением остатков фосфорной кислоты, углевода и одного из четырех оснований. В состав нуклеотида может входить один из двух углеводов — рибоза или дезоксирибоза, и в зависимости от этого существуют два типа нуклеиновых кислот: рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК), В состав рибонуклеиновой кислоты входят основания: гуанин, аденин, цитозин и урацил; в дезоксирибонуклеиновую кислоту вместо урацила входит гимин.

Важная особенность нуклеиновых кислот — комплементарность (взаимная дополнительность) их оснований. Это зависит от того, что при определенной ориептации в пространстве основания взаимодействуют между собой слабыми химическими (так называемыми водородными) связями. При этом аденин всегда взаимодейству от только с урацилом или хинином, а гуанин — с цитозином, как это показано на схеме.

Генетический аппарат вирусов представлен всеми возможными формами нуклеиновых кислот: однонитчатой и двухнитчатой РНК, однонитчатой и двухнитчатой ДНК, причем последняя может быть линейной или циркулярной. Такого разнообразия не знают другие формы жизни — растения или животные: их генетический аппарат всегда состоит из двухнитчатой ДНК, а рибонуклеиновой кислоте отведена роль источника и переносчика информации, и она всегда однопитчата. На примере вирусов природа как бы пробовала разные варианты генетического материала и, остановившись на двухнитчатой ДНК, сохранила ее затем на всем протяжении эволюции».

Размеры молекулы нуклеиновой кислоты колеблются в широких пределах: молекулярная масса РНК наиболее мелких вирусов не превышает одного миллиона, а ДНК наиболее крупных вирусов имеет молекулярную массу около 250 миллионов. В первом примере геном вируса содержит всего 3000 нуклеотидов, во втором — их 750 тысяч!

Другой основной биополимер, из которого построены вирусы, — белки. Белки также состоят из более простых соединений — аминокислот. Двадцать аминокислотных остатков соединены линейно, образуя цепь разной длины: молекулярная масса белков колеблется от немногих тысяч до сотен тысяч. Белковая (нолинептидная) цепь свертывается, и получается характерная для каждого белка фигура.

Сравнительно недавно удалось полностью расшифровать химическое строение первого вируса. Им оказался наиболее просто устроенный бактериофаг М5-2, в РНК которого закодировано всего три белка: А-белок, белок оболочки и репликаза. Важно заметить, что РНК этого фага сама служит матрицей для образования белков. Как оказалось, она содержит 3569 нуклеотидов, 129 из них располагаются в «начале» молекулы и не транслируются, последующие 1179 нуклеотидов содержат информацию для А-белка, 390 — для белка оболочки и, наконец, 1635 — для самого крупного белка — фермента репликазы, который делает дочерние копии РНК. Между всеми этими структурными участками располагаются своеобразные «запятые», состоящие из 26 и 36 нуклеотидов, а в «конце» молекулы находится заключительная «точка», вмещающая 174 нуклеотида.

Существует строгое соответствие между генетическим кодом (последовательностью нуклеотидов) и аминокислотным составом получаемых белков. Дополнительная проверка аминокислотной последовательности белков фага МS-2 точно соответствовала предсказанной теоретически (по нуклеотидам).

Итак, две основные химические составные части вирусов — нуклеиновые кислоты и белки. Наиболее просто организованные, они ничего другого не имеют. Но более сложно организованные вирусы имеют в своем составе углеводы, липиды (жиры) и другие химические соединения.

Однако существуют вирусы с более сложным строением. Так, вирусы гриппа и парагриппа имеют сердцевину (нуклеотид) в виде туго свернутой спирали (спиральный тип симметрии) и внешние оболочки, образующие шаровидное тело с кубическим типом симметрии. Некоторые бактериофаги (бактериальные вирусы) еще более сложны: головка их представляет полный икосаэдр, в котором заключено генетическое вещество вируса.

23. Механизм взаимодействия вируса с клеткой

Спектр хозяев разных вирусов значительно варьирует. Одни вирусы имеют широкий круг хозяев, другие заражают лишь определенные клетки одного вида хозяина. Широта круга хозяев может быть ограничена видом (видоспецифические вирусы) или определяться таксономическими категориями более высокого порядка. Вирусы, имеющие широкий круг хозяев, распространены среди вирусов растений. Например, вирус табачной мозаики и вирус желтухи астр инфицируют как растения, так и своего переносчика-насекомого. Примером вирусов животных и человека, имеющих несколько хозяев, являются арбовирусы. Вирус лихорадки Западного Нила инфицирует человека, комаров, водоплавающих птиц; вирус клещевого энцефалита — человека, животных, клещей. Однако не найдены вирусы, способные поражать одновременно клетки прокариот и эукариот.

Типы взаимодействия вируса с клеткой

Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.

Продуктивный тип — завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип — не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.

Интегративный тип, или вирогения — характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.

Адсорбция

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны — так называемых рецепторах. Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 104 до 105. Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.

Проникновение в клетку

Для того чтобы размножиться, вирус должен найти восприимчивую клетку. Каждый вирус обладает так называемой тканевой тропностью — способностью инфицировать клетки определенного типа. Так, вирусы растений поражают или ткань листа, или ткань прицветника или клетки корневой системы. Вирусы бактерий видоспецифичны — вирусы архибактерий не могут инфицировать клетку E. coli, а многие колифаги не проникают в клетку шигеллы. Наиболее выражена тканевая специфичность вирусов животных и человека. Так, вирусы гепатитов поражают гепатоциты, вирус Эпштейна-Барр (вызывает инфекционный мононуклеоз) обладает тропностью к B-лимфоцитам, ВИЧ — к T-лимфоцитам, кишечные вирусы — к энтероцитам, кардиотропностью обладают вирусы Коксаки B. Целый ряд вирусов обладает тропностью не к одному, а к нескольким типам клеток. Так полиовирусы тропны к клеткам респираторного тракта, желудочно-кишечного тракта (ЖКТ), центральной нервной системы (ЦНС). Вирус гепатита C (ВГC) лимфотропен и гепатотропен.

Специфическое сродство вирусов к клеткам и тканям определяется двумя механизмами:
— Присутствием на клеточной поверхности специфических для вируса рецепторов.
— Содержанием в системе активирующих ферментов, необходимых для протеолитического расщепления вирусных поверхностных белков и проявления инфекционной активности вируса.

Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

Проникновение вируса в организм хозяина у разных биологических видов решается по-разному.
1. Вирусы растений проникают в организм хозяина по типу раневых инфекций, где распространяются по плазмодесмам, ксилеме и флоэме.
2. Вирусы бактерий — путем введения нуклеиновой кислоты в тело клетки или путем проникновения вириона.
3. Вирусы насекомых попадают в организм хозяина в процессе питания или размножения.
4. Вирусы животных и человека при инфицировании организма хозяина проходят более сложный путь. Одни вирусы (вирус гриппа, ротавирусы) реплицируются и вызывают заболевание в месте проникновения в организм (входные ворота инфекции). Другие вирусы, попав в организм хозяина с использованием того или иного механизма, проходят стадию распространения. Распространение вируса в организме сопровождается виремией (вирусемией) — циркуляцией вируса в крови, что свидетельствует о генерализации инфекции.

Различают несколько путей распространения вирусов в организме:
1. Нейронный путь (вирусы бешенства, герпеса).
2. Лимфатический путь (реовирусы, полиомавирусы).
3. Гематогенный путь, ассоциированный с клеточными компонентами и плазмой крови (вирус краснухи, вирусы гепатита B и C, цитомегаловирус, энтеровирусы).
Сохранение вируса как биологического вида обеспечивает его восприимчивый хозяин, который является основным элементом экологической ниши вируса. Способность клеток или организма хозяина заражаться называется восприимчивостью.

«Раздевание»

Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания» являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.

Биосинтез компонентов вируса

Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.

Реализация генетической информации вируса осуществляется в соответствии с процессами транскрипции, трансляции и репликации.

Формирование (сборка) вирусов

Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей.

Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки

Различают два основных типа выхода вирусного потомства из клетки. Первый тип — взрывной — характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип — почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид. Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5—6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

24.Бактериофаги: строение, химический состав, значение

Бактериофаги − это вирусы, поражающие бактерии.

В 1896 г. Н.Ф. Гамалей обработал дистиллированной водой культуру бактерий сибирской язвы и получил вещество, которое при добавлении к свежей культуре этих микроорганизмов растворяло их за 6−12 часов. В 1915 г. американский ученый Туорт описал инфекционную болезнь стафилококков. Он выдвинул гипотезу о фильтрующем вирусе, аналогичном вирусам животных и человека.

В 1917 г. Д. Эрелль (французский ученый), работавший в институте Пастера сделал в печати сообщение об открытии бактериофага. Работая с дезинтерийной палочкой, он обнаружил, что некоторые культуры оказывались стерильными. Этими опытами он доказывал наличие ультравируса бактерий, то есть фага.

Бактериофаги являются наиболее изученными вирусами. Они обнаружены почти у всех бактерий. Фаг состоит из головки 60-100 нм и отростка или хвоста 100-120 нм. Головка имеет кубический тип симметрии и состоит из белковой оболочки (состоящей из) и заключенной в ней DNK. Отросток состоит из полого стержня, на который нанизан сократительный чехол. На конце стержня имеется базальная пластинка с шипами и нитями (от них зависит адсорбция на клетке хозяина).

Некоторые фаги имеют более простое строение. По своей форме зрелые фаги разделяются на несколько типов:

1. нитевидные;

2. гексогональные;

3. октаэдрические и т.д.

Химический состав:

40-50% DNK и 50-60% - белки. DNK большинства фагов двухцепочечная. Однако обнаружены и одноцепочечные DNK и двухцепочечная РНК. DNK фагов отличаются от DNK бактерий наличием 5- оксиметилцитозина.

Белки фагов мало изучены, существенных различий в аминокислотном составе не обнаружено. В концевой части отростка обнаружено наличие лизоцима и аденозинтрифосфатазы, вызывающей сокращение отростка. Бактериофаг может существовать в трех состояниях: профаг, вегетативный фаг и зрелый фаг.

Зрелые фаги существуют вне клетки хозяина, они инертны, не активны и напоминают споры бактерий. После адсорбции часть фаговой частицы проникает во внутрь бактерии и начинает усиленно размножаться. Такая, размножающаяся внутри клетки фаговая частица называется вегетативным фагом. Этот процесс всегда сопровождается гибелью клетки хозяина.


Некоторые фаги после проникновения внутрь бактериальной клетки вступают с ней в «симбиотические» взаимоотношения и могут находиться в клетке неограниченно долгое время. Такое состояние называется профагом, а бактерии в таком состоянии называются лизогенными. Лизогенные бактерии в природе представляют основной резервуар бактериофагов.

Различают фаги умеренные и вирулентные. В «симбиотические» отношения вступают умеренные фаги. Большинство фагов специфичны, однако есть и поливалентные, которые могут поражать и близкородственные бактерии.

Цикл взаимодействия фага с клеткой разделяться на 4 этапа:

1. адсорбция;

2. внедрение;

3. внутриклеточное размножение;

4. освобождение фага из клетки.

Фаг прикрепляется к клетке хвостовым концом. При этом положительно заряженные аминогруппы фагового белка соединяются с карбоксильными группами белка клеточной стенки. Под действием литического фермента хвостовой части растворяется клеточная стенка, сокращается хвостовой участок и DNK с некоторым количеством белка вливается во внутрь клетки. На поверхности клетки остаются пустые белковые оболочки - тени фагов.

Внутреклеточное размножение начинается с того, что под действием DNK фага изменяется клеточный обмен, начинается синтез фагового материала. Многократно удваиваются нити фаговой DNK. Длительность внутриклеточного размножения от 15 минут до 2 часов. Большое накопление фаговых частиц приводит к разрыву бактериальной клетки и освобождению зрелых фагов.

Значение фагов.

1. Фаги являются хорошим материалом для изучения наследственности и изменчивости, фаготерапии, фагопрофилактики инфекционных заболеваний, вопросов экспериментальной онкологии.

2. Приносят вред производствам, основанным на жидкости микроорганизмов (производство вакцин, молочных продуктов, антибиотиков, бактериальных удобрений). Фаги широко применялись во время Великой отечественной войны для лечения газовой гангрены (затем их заменили антибиотиками). На основе специфичности фаговопределяют вид бактерий, чистоту водоёмов. Так, наличие в воде фага кишечной палочки сигнализирует о загрязнении источника. С помощью фага можно определить культуру бактерий от больного.

хорошим материалом для изучения наследственности и изменчивости, фаготерапии, фагопрофилактики

25. Риккетсии и микоплазмы

Грамм-отрицательные, мелкие бактерии. Прокариоты (отсутствие оформленного ядра, отсутствие митохондрий, наличие мезосом). Риккетсии имеют мелкие размеры, по-крайней мере они бывают около 1 мкм. На некоторых стадиях развития могут быть разные формы - бациллярные, нитевидные. Они являются облигатными внутриклеточными паразитами. Все эти стадии измененния формы они проходят внутри клеток. Риккетсии не имеют спор, нет жгутиков - не подвижны. При нахождении их внутри клеток они образуют что-то наподобие капсулы. Кроме основной формы, могут образовывать малые формы. Малые формы образуются в организме человека при неблагоприятных условиях (при иммунной защите). Эти малые формы обеспечивают сохранение их в организме, даже в некоторых случаях до 10 лет, иногда активируются.

Метаболизм. Риккетсии - внутриклеточные паразиты. Существовать и размножаться могут только в живой клетке с активным метаболизмом. На питательной среде конечно же не культивируются. Они являются аутотрофами НАД+, не могут получать это соединение, а должны получать его извне, поэтому не способны к существованию вне клетки. Из клеток это чаще эпителиальные клетки, клетки эндотелия сосудов и макрофагальные клетки.

Переносчиками их являются насекомые. У насекомых они паразитируют в эндотелии сосудов кишечника. У человека поражают самые разные органы и ткани.

Находясь внутри клеток, делятся делением пополам (бинарное деление). Не смотря на очень маленькие размеры, обладают некоторыми антигенами:

Риккетсии могут иметь общие АГ с достаточно далеко расположенными от них бактерий. Так Proteus имеет такой же АГ, как и у риккетсий. Когда микробиологи не могли выращивать риккетсии, тогда было предложено использовать АГ протея. Этот АГ используется в качестве диагностики. Сейчас риккетсии можно культивировать на питательных средах. Но лучше - в желточном мешке куриного эмбриона (как вирусы).

Резистентность. Большинство риккетсий мало устойчивы во внешней среде в силу того, что они являются внутриклеточными паразитами. При 50*С погибают за несколько минут. При кипячении - мгновенно. Легко поддаются действию антисептиков, дезинфектантам, антибиотикам (тетрациклин).

Патогенность связана с адгезией и инвазией. Они связываются с теми клетками, у которых есть холестерин-содержащий рецептор. После адгезии - эндоцитоз. Риккетсии оказываются в цитоплазме, где в большинстве случаев происходит их размножение. Однако оно может быть и в ядре. При размножении риккетсий гибнет клетка. Происходит это прежде всего в эндотелии мелких сосудов, поэтому характерны кровоизлияния, воспалительные процессы, сыпи. Наиболее опасно когда повреждаются сосуды внутренних органов, серого вещества головного мозга. Токсическое действие - за счёт эндотоксина. Токсин действует по-разному, одно из действий - сосудорасширяющее.

Классификация. Имеется несколько родов, многие названия даны по имени авторов. Изучать их опасно, отмечалось много случаев заражения.

Пути передачи. Так как они малоустойчивы во внешней среде, то для передачи требуется переносчик (вши, клещи). Если вши, то заболевание носит эпидемический характер. Если клещи, то эндемический, т.к. клещи тяготеют к определённому ареалу (природная очаговость). Coxiella, которая более устойчива во внешней среде, может передаваться алиментарным, воздушно-капельным путём и вызывать Ку-лихорадку. Человек чаще всего является случайным звеном, попав в очаг, где распространены возбудители. В том случае, когда переносчиком являются вши, то возбудитель вместе с фекалиями попадает на кожу, потом при втирании попадает в кожу и лимфу. Здесь нет укуса, через укус больного человека вши сами получают возбудителя. В тех случаях, когда переносчиками являются клещи, человек получает возбудителя либо через укус, либо посредством втирания. У клещей возбудители находятся в слюнных железах. У них возможна трансовариальная передача. И их можно рассматривать не только как переносчиков, но и как хозяев.

В естественных условиях риккетсиозы наблюдаются только у членистоногих, а также диких и домашних животных. У членистоногих чаще протекает бессимптомно, у животных очень часто даёт летальные исходы. Риккетсиозы делят на антропонозы (болеет только человек) и зоонозы. Антропонозы - только два - вшивый сыпной тиф и волынская лихорадка. Все остальные - эндемические зоонозы с природной очаговостью. Могут передаваться не только клещами (напр. блохами).

Обычно, риккетсиоз - это лихорадочное заболевание, протекающее остро. Характеризуется высыпаниями на коже, васкулитами, тромбоваскулитами. Наиболее опасен эпидемический сыпной тиф, который не имеет очагов распределения. Так как переносчиком является вши, то эти заболевания встречаются во время войны, низкой экологии и гигиены.

Есть заболевание, которое называется рецидивом эпидемического сыпного тифа - оно называется спародический сыпной тиф (болезнь Брилла-Цинсерса). В этом случае риккетсии сохраняются в малой форме и заболевание может проявиться через год, два или 25 лет. Оно будет наблюдаться у старых людей в отсутствие завшивости.

Перенесённые риккетсиозы создают прочный напряжённый иммунитет. Иммунитет является перекрёстным (т.е. перенеся одно инфекционное заболевание, создаётся иммунитет и против других риккетсий). По характеру - антимикробный и антитоксический, в основном гуморальный.

Профилактика. В настоящее время используется атенуированная вакцина против эпидемического сыпного тифа. Есть вакцина против Ку-лихорадки.

26.Влияние влажности, температуры и реакции среды на рост и развитие микроорганизмов

Факторы внешней среды постоянно влияют на жизнедеятельность микроорганизмов. При благоприятных условиях наблюдаются быстрый рост и размножение микробов. В условиях, неблагоприятных для жизнедеятельности, развитие замедляется, и далее может наступить их гибель. Факторы внешней среды, оказывающие влияние на микроорганизмы, подразделяют на физические, химические и биологические.

Физические факторы. К физическим факторам внешней среды, влияющим на жизнедеятельность микроорганизмов, относятся температура, влажность, свет и др.

Влияние температуры. Микроорганизмы могут переносить значительные колебания температуры. Для нормальной жизнедеятельности микробной клетки необходима определенная температура. Различают три температурные точки: оптимальную, минимальную и максимальную, при которых может проявляться их жизнедеятельность различной интенсивности. Оптимальная температура та, при которой наиболее интенсивно растут и развиваются микроорганизмы. Минимальная температура - это самая низкая, при которой еще возможно развитие микробов. Ниже этой температуры микроорганизмы снижают свою биохимическую активность, но не погибают, а переходят в анабиотическое состояние, т.е. состояние скрытой жизни, напоминающее зимнее оцепенение многих хладнокровных (лягушек, змей, ящериц). Максимальная - это самая высокая температура, при которой еще возможны рост и развитие микроба. Выше максимальной температурной точки микроб погибает.

В зависимости от температуры, к которой микроорганизмы приспособились в процессе длительной эволюции, их подразделяют на психрофилы, мезофилы и термофилы.

Психрофилы (холодолюбивые) способны развиваться при низкой температуре. Оптимальной для них является температура 15-20 °С, минимальной 0-10, максимальной 30-35 °С. К этой группе относятся некоторые представители кокковой микрофлоры, плесневые грибы, железобактерии и др., вызывающие порчу продуктов при хранении в холодильниках.

Мезофилы - группа микроорганизмов, которые развиваются при средних температурах. Оптимальной для них является температура 30-37 °С, минимальной 10, максимальной 43-50°С. К этой группе относятся многие плесневые грибы, дрожжи, гнилостные и все патогенные микроорганизмы.

Термофилы (теплолюбивые) - микробы, развивающиеся при сравнительно высокой температуре. Оптимальной для них является температура 50-60 °С, минимальной 35, максимальной 75-85 °С. Термофилы являются основными возбудителями порчи мясных и мясорастительных консервов, принимают участие в самонагревании силоса, влажного зерна, сена, хлопка, муки и др. Некоторые термофильные микробы (споровые палочки) сохраняют жизнедеятельность при температуре выше 85 °С.

Микроорганизмы весьма устойчивы к охлаждению и замораживанию. Некоторые виды бактерий и плесневых грибов выдерживают температуру жидкого воздуха (- 190 °С) и жидкого водорода (- 253 °С). Очень устойчивыми к низкой температуре являются вирусы. При низкой температуре все же происходит ряд изменений, которые могут привести к гибели микроба. Скорость отмирания микробов при замораживании зависит от вида микроба, температуры замораживания, кратности замораживания и оттаивания, вида и продолжительности хранения продукта в замороженном состоянии и др.

Высокая температура, вызывающая гибель микробной клетки, называется летальной. Губительное действие высокой температуры обусловливается повреждением коллоидного состояния плазмы, денатурацией белка с последующей коагуляцией его, а также нарушением ферментативных систем. Большинство неспоровых микробов погибают во влажной среде при температуре 60-70 °С за 15-30 мин, при температуре 85 °С - за 3-5 и при температуре 100°С - моментально. Весьма устойчивыми к высокой температуре являются споры бацилл. Споры некоторых микроорганизмов выдерживают кипячение от нескольких минут до нескольких часов.

Влияние влажности. Минимальная влажность, необходимая для жизнедеятельности бактерий, 30 %, для плесневых грибов - 15 %. Различные виды микроорганизмов не в одинаковой степени чувствительны к высушиванию, при котором происходит потеря воды, в результате чего наступает гибель клетки. Наиболее чувствительны к высушиванию неспорообразующие микробы. Споры обладают высокой устойчивостью к высыханию, сохраняясь в высушенном состоянии в течение нескольких лет. Высушивание используют как один из методов сохранения скоропортящихся продуктов. В мясной промышленности метод высушивания нашел широкое применение для консервирования мяса, колбас, мясокостной муки и т.д.

Лиофильная сушка (высушивание при низкой температуре и разрежении) способствует длительному сохранению микроорганизмов. Этот метод используют в промышленности для получения сухих вакцин (живых), консервирования мяса и эндокринного сырья, приготовления органопрепаратов и заквасок для кисломолочных продуктов.

Влияние света. Прямые солнечные лучи, особенно ультрафиолетовые, оказывают бактерицидное действие. Микробная клетка вегетативных форм погибает на солнечном свету через несколько минут. Рассеянный свет не оказывает столь губительного действия на микробов, но при длительном воздействии может постепенно тормозить их рост и развитие.

Ультрафиолетовое облучение применяют на предприятиях мясной промышленности для обеззараживания воздуха, поверхности оборудования и различных предметов с помощью бактерицидных ламп.

Влияние излучений. Микроорганизмы более устойчивы к воздействию рентгеновских и гамма-лучей; смертельная доза для них в сотни и тысячи раз больше, чем для животных. Рентгеновское и гамма-излучение в малых дозах и при непродолжительной экспозиции оказывают стимулирующее действие на рост и размножение микробов. Большие дозы рентгеновских лучей инактивируют ферменты, замедляют рост и предотвращают размножение микробов.

Влияние ультразвуковых волн. Ультразвуковые волны обладают значительной механической энергией, способной инактивировать ферменты, токсины, разрушать микробную клетку. Смертельное воздействие на бактерии и вирусы начинает проявляться при озвучивании среды с частотой колебаний около 100 тыс. Гц. Ультразвук может быть использован для стерилизации и пастеризации продуктов, очистки и дезинфекции оборудования, тары, сточных вод.

Влияние давления. Микроорганизмы устойчивы к высоким давлениям. Микробы обнаружены на дне глубоких морей и океанов, где давление достигает более 90 МПа (900 кгс/см2), некоторые дрожжи, плесневые грибы выдерживают давление 300 МПа (3000 кгс/см2).

27. Влияние света и кислорода на рост и развитие микроорганизмов

Влияние света. Прямые солнечные лучи, особенно ультрафиолетовые, оказывают бактерицидное действие. Микробная клетка вегетативных форм погибает на солнечном свету через несколько минут. Рассеянный свет не оказывает столь губительного действия на микробов, но при длительном воздействии может постепенно тормозить их рост и развитие.

Ультрафиолетовое облучение применяют на предприятиях мясной промышленности для обеззараживания воздуха, поверхности оборудования и различных предметов с помощью бактерицидных ламп.

Влияние излучений. Микроорганизмы более устойчивы к воздействию рентгеновских и гамма-лучей; смертельная доза для них в сотни и тысячи раз больше, чем для животных. Рентгеновское и гамма-излучение в малых дозах и при непродолжительной экспозиции оказывают стимулирующее действие на рост и размножение микробов. Большие дозы рентгеновских лучей инактивируют ферменты, замедляют рост и предотвращают размножение микробов.

Влияние ультразвуковых волн. Ультразвуковые волны обладают значительной механической энергией, способной инактивировать ферменты, токсины, разрушать микробную клетку. Смертельное воздействие на бактерии и вирусы начинает проявляться при озвучивании среды с частотой колебаний около 100 тыс. Гц. Ультразвук может быть использован для стерилизации и пастеризации продуктов, очистки и дезинфекции оборудования, тары, сточных вод.

Влияние давления. Микроорганизмы устойчивы к высоким давлениям. Микробы обнаружены на дне глубоких морей и океанов, где давление достигает более 90 МПа (900 кгс/см2), некоторые дрожжи, плесневые грибы выдерживают давление 300 МПа (3000 кгс/см2).

Концентрация кислорода и рост бактерий Кислород необходим для аэробного дыхания. В зависимости от потребностей в кислороде микроорганизмы можно разделить на следующие группы: 1. Облигатные аэробы. Микроорганизмы, которые могут расти только в присутствии кислорода, например Mycobacterium tuberculosis — бактерия, вызывающая туберкулез, плесневые грибы, такие как Penicilli-um, водоросли и большинство простейших. Облигатными аэробами являются большинство бактерий и грибов. 2. Факультативные аэробы. Микроорганизмы, которые используют кислород, если он доступен, но в его отсутствие могут расти и анаэробно, например, Е. coli и многие другие бактерии, дрожжи, некоторые простейшие. 3. Облигатные анаэробы. Микроорганизмы, которые выживают только в анаэробных условиях, например в кишечнике или рубце жвачных животных. К ним относятся Clostridium tetani, обитающий в почве и вызывающий столбняк, и Clostridium botulinum, обнаруживаемый иногда в богатых белком (например, мясных) консервах и являющийся возбудителем ботулизма — тяжелой формы пищевого отравления, часто приводящего к смертельному исходу. 4. Микроаэрофилы. Микроорганизмы, которые лучше всего растут при более низких, чем в воздухе, концентрациях кислорода. К ним относится, например, Lactobacillus, обнаруживаемый в молоке.

28. Действие химических веществ на микроорганизмы

Химические факторы. Микробная клетка реагирует на самое незначительное количество химического вещества в среде. Так, если в каплю воды, содержащую подвижные бактерии, опустить капилляр, наполненный раствором пептона (питательного для микробов вещества), то через некоторое время можно заметить скопление микроорганизмов у отверстия капилляра. Это так называемый положительный химиотаксис - бактерии движутся навстречу привлекающему их веществу. Если же капилляр будет заполнен щелочью или кислотой, то бактерии уходят от диффундирующего в воду ядовитого для них вещества, т.е. наблюдается отрицательный химиотаксис.

Действие химических веществ на микроорганизмы проявляется не в одинаковой степени. Как правило, малые концентрации не только не вызывают гибели микробов, а даже стимулируют их рост и развитие.

Большие концентрации химических веществ действуют на микроорганизмы бактериостатически или бактерицидно, вызывая их гибель. Химические вещества, вызывающие гибель микроорганизмов, получили название дезинфицирующих. Эффективность действия химических веществ зависит от химической природы этого вещества, его концентрации, температуры, реакции среды, вида микроорганизма и др. Вещества, применяемые для уничтожения микробов, должны быть в растворенном состоянии. Чем легче вещество адсорбируется микробной клеткой, тем сильнее его действие. Химические вещества в зависимости от их действия на микробную клетку можно разделить на следующие группы:

вещества, повреждающие только клеточную стенку, не изменяющие внутренней структуры микроба (мыла, жирные кислоты);

вещества, вызывающие повреждение оболочки и клеточных белков (фенол, крезол и их производные);

вещества, вызывающие денатурацию белков (формальдегид - 40%-ный раствор формалина);

вещества, вызывающие инактивацию ферментов (соли тяжелых металлов - соли ртути, меди, серебра и др.).

Наиболее чувствительными к химическим веществам являются микробы, не образующие спор, вегетативные формы. Споровые формы довольно устойчивы к воздействию различных химических веществ. Для их уничтожения необходимо готовить горячие растворы высокой концентрации химических веществ. Так, споры сибиреязвенной палочки погибают в 5%-ном растворе фенола только за 14 сут, в то время как вегетативные формы этого возбудителя гибнут от такой концентрации за несколько секунд.

При выборе дезинфицирующих веществ для уничтожения микробов необходимо учитывать вид микроорганизма. Например, вирусы очень чувствительны к щелочам, возбудитель сибирской язвы - к хлору и формальдегиду, а возбудители туберкулеза устойчивы к воздействию кислот и щелочей.

Реакция среды (рН - показатель концентрации водородных ионов) оказывает влияние на рост и развитие микроорганизмов. Жизнедеятельность различных видов микробов возможна только при определенном рН. Большинство микроорганизмов развиваются в слабощелочной среде (рН 7,2-7,6), дрожжи и плесневые грибы лучше культивируются при рН 3-6. Меняя реакцию среды, можно регулировать интенсивность развития и биохимическую активность микробов. При снижении рН до 5 гнилостные бактерии не развиваются, в то время как при такой реакции наиболее активно проявляется ферментативная активность дрожжей.

29. Химический состав микробной клетки

Тела микроорганизмов содержат те же химические вещества, которые находятся и у высших растений и животных. Это говорит о материальном единстве и физиологическом родстве всего живого мира.

Вода составляет основную массу микробной клетки - в капсульных бактериях ее больше, в бациллах меньше. В Aerobacter aceti воды содержится 98,3 %, в кишечной палочке - 73,3, в спорах - до 50%. Количество воды в микробных клетках в среднем колеблется от 75 до 85 %/В спорах - уплотнении цитоплазмы микробной клетки - вода находится в связанном состоянии, у вегетативных форм - в свободном. Связывание воды обусловливается более высоким содержанием в спорах кальция и магния. В такой среде белки не коагулируют, что повышает их устойчивость к высоким температурам. Больше воды содержат молодые формы и меньше - зрелые. Связанная вода входит в состав молекул белков, углеводов, жиров и других соединений. Свободная вода служит средой, в которой происходит движение ионов и электрических зарядов. С участием воды осуществляются биохимические и физиологические процессы в клетке. Уменьшение ее ведет к замедлению жизнедеятельности (анабиоз), высушивание - даже к гибели вегетативных форм. Следовательно, вода - один из главных компонентов, с которым связана жизнедеятельность микробной клетки.

Сухого вещества в микробах в среднем 15-25 %, в нем содержатся органогены, входящие в состав органических веществ, и зольные элементы. Органические вещества представлены белками, нуклеиновыми кислотами, углеводами, липидами. В их состав входят: углерод (45-55 %), кислород (30-40 %), азот (8-10 %), водород (6-8 %), содержание которых достигает 90-97 сухого вещества.

Белки в сухом веществе микробных тел составляют самое большое количество - 50-80%. Простые белки - протеины микробных тел близки по составу к протеинам высших организмов. При гидролизе их образуются только аминокислоты: триптофан, лизин, аргинин, тирозин, лейцин и др. Сложные белки - протеиды представляют собой соединения простых белков с небелковыми веществами: с нуклеиновыми кислотами (нуклеопротеиды), полисахаридами (глюкопротеиды), с жирами и жироподобными веществами (липопротеиды), с железом (хромопротеиды) и др. Протеиды играют исключительно важную роль в жизнедеятельности микробов. К протеидам относятся и ферменты. Белки имеют очень большой молекулярный вес - от десятков тысяч до нескольких миллионов - и являются коллоидами. Они дают растворы - золи, которые легко переходят в состояние вязкого геля - студня. Переход золя в гель и обратно имеет большое значение в жизнедеятельности клетки. Белки наиболее легко выпадают в осадок в изоэлектрической точке, когда степень диссоциации кислых и щелочных групп одинакова.

Белки-полимеры состоят из полипептидов, а последние в свою очередь из аминокислот. Число аминокислот в молекуле низкомолекулярных белков составляет более ста, в крупных белковых молекулах может содержаться их несколько десятков тысяч. Порядок расположения аминокислот пока выяснен только у немногих белков, например: в ферменте рибонуклеазе, в белке вируса табачной мозаики. Всего в организмах имеется около 20 различных аминокислот. Но из них может возникать неисчислимо большое количество разнообразнейших белков.

Нуклеиновые кислоты составляют 5-30% сухого вещества. Они также высокомолекулярные полимеры. Наиболее крупные молекулы их можно видеть в электронный микроскоп. Длинная цепочка молекулы нуклеиновой кислоты состоит из ряда построенных одинаковым образом звеньев - нуклеотидов. Нуклеотид состоит из молекулы азотистого основания, молекулы углевода, содержащей 5 атомов углерода (пентоза) и остатка молекулы ортофосфорной кислоты.

Нуклеиновые кислоты, содержащие углевод дезоксирибозу (С5Н11О4), называются дезоксирибонуклеиновыми (ДНК), а содержащие рибозу (C5H11O5) -рибонуклеиновыми (РНК). Из азотистых оснований ДНК содержит пурины - аденин, гуанин и пиримидины - тимин и цитозин. РНК содержит те же основания только кроме тимина - урацил. В каждом нуклеотиде одно из этих оснований. В молекуле ДНК содержится 20-25 тысяч таких нуклеотидов, в РНК-5-6 тысяч. Отдельные нуклеотиды, соединенные между собой эфирными связями, образуют спирально закрученные нити. Эти спирали у РНК однонитчатые, а у ДНК двухнитчатые, в виде винтовой лестницы. В ДНК пурин - аденин одной спирали всегда соединен водородными связями с пиримидином - тимином другой спирали, а гуанин с цитозином. Такие пары нуклеотидов в той или другой ДНК находятся в определенном количестве и расположены в определенной последовательности.

Углеводы в микробной клетке представлены полисахаридами. В цитоплазме углеводы могут встречаться в виде зерен крахмала и гликогена. Они служат главным образом энергетическим материалом, их содержание в микробной клетке от 12 до 28 %. Углеводами богаты капсульные микробы: азотобактер, лейконосток, возбудитель сибирской язвы и др. В каждом из микроорганизмов имеется определенный полисахарид, что дает возможность дифференцировать их. Образующаяся на поверхности патогенных микробов капсула, состоящая из углеводов, обусловливает их вирулентность и выполняет защитную функцию.

Липоиды - жироподобные, не растворяющиеся в воде вещества. Они в сухом остатке составляют 1,7-3,7%. Особенно много их у кислотоупорных бактерий. Так, туберкулезная палочка содержит их до 40%. Липоиды содержатся в оболочке и поверхностных слоях протоплазмы. Многие липоиды обладают большой физиологической активностью, принимают участие в обмене веществ. Сюда относятся фосфолипиды, т. е. липоиды, содержащие азот и фосфор, стероиды, каковым является эргостерин, содержащийся в пивных дрожжах. Из эргостерина налажено целое производство витамина D. К липоидам относятся также каротиноиды - оранжевые пигменты розовых дрожжей, некоторых пигментированных бактерий и актиномицетов. Через липоидные оболочки проникают в клетку вещества, нерастворимые в воде.

Минеральные вещества бактерий, так называемые зольные элементы, составляют 3-10% сухого вещества. Больше всего в золе находится фосфора, около половины всей золы. Фосфор входит в состав таких физиологически активных веществ, как нуклеопротеиды, фосфолипиды и ряд коферментов (тиамин и пр.). Фосфорная кислота играет выдающуюся роль в дыхании микробов, аденозинтрифосфорная кислота является аккумулятором образовавшейся энергии. Фосфор в составе органических веществ живой клетки находится в окисленной форме (Р2О5). Источником фосфора служат соли ортофосфорной кислоты. Около четверти веса золы составляет калий. В небольших количествах содержится магний, кальций, сера и совсем малое количество натрия, хлора, кальция, железа. При ничтожном количестве в золе значение железа весьма велико: оно участвует в реакциях окисления и восстановления, входит в состав ферментов - цитохромов, оксидаз, пероксидазы. Сера - жизненно важный элемент для построения белка клетки.

Восстановленная группа SH обладает большой реактивной способностью. Источником серы являются сернокислые соли, для серобактерий - восстановленные соединения серы и сера. Калий невозможно заменить натрием и другими элементами. Значение его состоит в том, что он влияет на гидрофильность коллоидов протоплазмы, повышая их обводненность, содействуя синтетическим процессам в клетке. Магний входит в состав хлорофилла у зеленых и пурпурных серобактерий. В натуральных средах, таких, как мясной бульон, пивное сусло, молоко и др., зольных элементов содержится достаточно. Но в синтетических средах приходится следить, чтобы эти соли были в должном количестве.

Кроме этих элементов для развития микробов необходимы в самых ничтожных количествах так называемые микроэлементы - бор, молибден, цинк, кобальт, медь, йод и др., ибо они участвуют в синтезе ферментных белков.

30. Особенности питания микроорганизмов.

По способу питания организмы подразделяются на три группы.

1. Автотрофные организмы (автотрофный тип питания) – способны синтезировать органические вещества из неорганических.
Автотрофные фотосинтезирующие организмы (фотоавтотрофы), к которым относятся зеленые растения и фотосинтезирующие бактерии, при создании органических соединений непосредственно используют лучистую энергию Солнца – единственного источника энергии для живой природы Земли. Все остальные живые существа используют энергию, заключенную в химических связях.
Автотрофные хемосинтезирующие организмы (хемоавтотрофы), к которым относятся некоторые бактерии, для синтеза органических соединений применяют энергию, выделяющуюся при окислении неорганических соединений (сероводорода, аммиака, железа и др.).

2. Гетеротрофные организмы (животные, грибы, незеленые растения, большинство бактерий) не способны самостоятельно синтезировать органические вещества из неорганических, они используют энергию химических связей готовых органических соединений (гетеротрофный тип питания). Гетеротрофные организмы, в свою очередь, подразделяются на сапрофитов и паразитов. Сапрофиты, или сапротрофные организмы, питаются органическими веществами мертвых тел (большинство видов животных, бактерий и грибов). Паразиты, или паразитические организмы (болезнетворные бактерии, паразитические растения, животные, грибы), потребляют органические вещества живых организмов.

3. Миксотрофные организмы, например, эвглена зеленая, насекомоядные растения (миксотрофный тип питания) могут питаться и как автотрофы, и как гетеротрофы. По отношению к кислороду организмы также неодинаковы и подразделяются на аэробные, которые дышат кислородом, необходимым для окислительно-восстановительных реакций при тканевом дыхании (энергетический обмен), в результате чего образуются молекулы АТФ – аккумуляторы энергии; и анаэробные, использующие вместо кислорода другие окислители.
Таким образом, обмен веществ имеет созидательный характер, его сущность в преобразовании поступающих извне веществ, а после их использования – в расщеплении данных веществ до образования продуктов жизнедеятельности (продуктов выделения) и последующего их удаления в окружающую среду. Поток веществ и энергии обеспечивает самообновление и самовоспроизведение организмов.

31. Поступление питательных веществ в микробную клетку, типы транспортных систем.

Выделяют несколько типов транспортных систем, при помощи которых вещества из окружающей среды проходят через ЦПМ.

Диффузия. Диффузионный транспорт приводит к выравниванию концентраций питательного субстрата по обе стороны цитоплазматической мембраны без затраты энергии. Иногда можно встретить утверждение, что диффундирующее вещество переходит из области большей концентрации в область меньшей концентрации под влиянием некой движущей силы. Это неверно, поскольку при диффузии происходит только статистическое перераспределение молекул, находящихся в хаотическом движении.

При пассивной диффузии в первую очередь играет важна степень липофильности субстрата, а уже затем – диаметр его молекулы. Липофильные молекулы (например, ароматические углеводороды) неспецифически проходят через цитоплазматическую мембрану, растворяясь в ее билипидном матриксе. Размер молекулы в данном случае несущественен. В отличие от липофильных молекул гидрофильные молекулы не обладают сродством к билипидному слою и поэтому могут преодолевать барьер цитоплазматической мембраны только через белковые каналы, или водные поры.

При облегченной диффузии белковый канал в результате связывания с субстратом меняет конформацию, что облегчает перенос питательного субстрата через цитоплазматическую мембрану. Однако клетка не расходует на это свою собственную энергию.





Дата публикования: 2015-04-09; Прочитано: 635 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.039 с)...