![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Две прямые перпендикулярны в том и только в том случае, когда угол j между ними равен , т.е.
.
Координаты точки , делящей отрезок АВ в данном отношении
, где
,
, можно вычислить по формулам
.
В частности, если , то
, т.е. М – середина отрезка АВ, то формулы примут вид
.
Если уравнение прямой дано в общей форме: , то расстояние точки
до этой прямой находится по формуле:
.
Площадь треугольника с вершинами ,
можно вычислить по формуле
.
Пример
Даны вершины треугольника . Найти:
1) уравнение стороны АВ;
2) уравнение медианы, проведенной из вершины С;
3) координату точки пересечения медиан;
4) уравнение высоты, опущенной из вершины В на сторону АС и ее длину;
5) уравнение прямой, проходящей через точку С параллельно прямой АВ;
6) площадь треугольника.
Решение
1) Используем уравнение прямой, проходящей через две точки . Подставив координаты точек
, получим
- общее уравнение прямой АВ, из которого находим уравнение прямой с угловым коэффициентом
,
.
2) Медиана, проведенная из вершины С делит противолежащую сторону АВ треугольника пополам. Найдем координаты точки Е середины стороны (рис.1):
, т.е.
,
. Подставим координаты точек в уравнение прямой, проходящей через две точки, получим
- общее уравнение прямой СЕ.
3) Точка М делит каждую медиану в отношении , считая от вершины. Таким образом, ее координаты
можно найти по формулам:
.
В нашем случае
,
откуда .
4) Найдем уравнение прямой, проходящей через заданную точку перпендикулярно прямой
из уравнения
. Найдем угловой коэффициент прямой АС, используя уравнение прямой, проходящей через две точки
и
:
- уравнение АС.
Угловой коэффициент прямой АС равен , тогда, используя условие перпендикулярности двух прямых
, получим
- уравнение высоты.
Длину высоты можно найти, как расстояние от точки до прямой АС по формуле
. В нашем случае уравнение прямой АС:
, следовательно,
.
5) Для нахождения уравнения прямой, проходящей через точку С параллельно прямой АВ используем уравнение прямой, проходящей через заданную точку в заданном направлении и условие параллельности двух прямых. Известно, что угловой коэффициент прямой АВ равен
, следовательно,
-
- уравнение искомой прямой.
6) Площадь треугольника находится по формуле: , в нашем случае
.
у А (4;6)
Е
В (-4;0) М
0 1 х
С (-1;-4)
Рис. 1
Дата публикования: 2015-04-06; Прочитано: 336 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!