Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Решение. На рис.9.4 построены исходные данные по десяти поездкам



На рис.9.4 построены исходные данные по десяти поездкам.

Рис.9.4. График исходных данных задачи №9.01

Помимо расстояния на время поставки влияют пробки на дорогах, время суток, дорожные работы, погода, квалификация водителя, вид транспорта. Построенные точки не находятся точно на линии, что обусловлено описанными выше факторами. Но эти точки собраны вокруг прямой линии, поэтому можно предположить линейную связь между параметрами. Все исходные точки равномерно распределены вдоль предполагаемой прямой линии, что позволяет применить метод наименьших квадратов.

Вычислим суммы, необходимые для расчета коэффициентов линейной регрессии, коэффициента детерминации с помощью табл.9.3.


Таблица 9.3

Вспомогательная таблица задачи №9.01

3,5   12,25 56,00 15,223 2,634129 5,76
2,4   5,76 31,2 12,297 1,697809 0,36
4,9   24,01 93,1 18,947 28,59041 29,16
4,2   17,64 75,60 17,085 12,14523 19,36
3,0   9,00 36,00 13,893 0,085849 2,56
1,3   1,69 14,30 9,371 17,88444 6,76
1,0   1,00 8,00 8,573 25,27073 31,36
3,0   9,00 42,00 13,893 0,085849 0,16
1,5   2,25 13,50 9,903 13,66781 21,16
4,1   16,81 65,60 16,819 10,36196 5,76
28,9 136 99,41 435,30 112,4242 122,4

.

По формулам (9.3) вычислим коэффициенты линейной регрессии

Таким образом, искомая регрессионная зависимость имеет вид

(9.4)

Наклон линии регрессии 2,66 минут на милю – это количество минут, приходящееся на одну милю расстояния. Координата точки пересечения прямой с осью Y 5,913 минут – это время, которое не зависит от пройденного расстояния, а обуславливается всеми остальными возможными факторами, явно не учтенными при анализе.

По формуле (9.2) вычислим коэффициент детерминации

или 91,8%.

Таким образом, линейная модель объясняет 91,8% вариации времени доставки. Не объясняется вариации времени поездки, которые обусловлены остальными факторами, влияющими на время поставки, но не включенными в линейную модель регрессии.

Поскольку коэффициент детерминации имеет достаточно высокое значение и расстояние 2 мили, для которого надо сделать прогноз, находится в пределах диапазона исходных данных (см. табл.9.2), то мы можем использовать полученное уравнение линейной регрессии (9.4) для прогнозирования

минут.

При прогнозах на расстояния, не входящие в диапазон исходных данных, нельзя гарантировать справедливость модели (9.4). Это объясняется тем, что связь между временем и расстоянием может изменяться по мере увеличения расстояния. На время дальних перевозок могут влиять новые факторы такие, как использование скоростных шоссе, остановки на отдых, обед и т.п.

Приблизительным, но самым простым и наглядным способом проверки удовлетворительности регрессионной модели является графическое представление отклонений (рис.9.5).

Рис.9.5. График отклонений в задаче №9.01

Отложим отклонения по оси Y, для каждого значения . Если регрессионная модель близка к реальной зависимости, то отклонения будут носить случайный характер и их сумма будет близка к нулю. В рассмотренном примере .





Дата публикования: 2015-04-10; Прочитано: 393 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.046 с)...