Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Компенсационные стабилизаторы напряжения постоянного



Тока

Высокие коэффициент стабилизации и качество выходного напряжения можно получить только с помощью стабилизатора компенсационного типа. Это устройство с обратной связью. Его структурная схема приведена на рис.4.14.

Рисунок 4.14 – Структурная схема компенсационного стабилизатора

На рисунке обозначено:

РЭ - регулирующий элемент (транзистор);

ИЭ – измерительный элемент;

УЭ – усилительный элемент (усилитель постоянного тока –УПТ).

При изменении входного напряжения или тока нагрузки ИЭ измеряет выходное напряжение, сравнивает его с эталонным и вырабатывает сигнал рассогласования (ошибки), который усиливается УЭ и управляет РЭ так, что бы свести ошибку к нулю. Избыточное входное напряжение гасится на РЭ и рассеивается в виде тепла. Принципиальная схема стабилизатора, соответствующая структурной схеме (рис.4.14) показана на рис.4.15.

Рисунок 4.15 – Принципиальная схема компенсационного стабилизатора напряжения (КСН)

РЭ выполнен на транзисторе VT1, включенным по схеме ОК с нагрузкой RH; ИЭ выполнен в виде моста, левое плечо которого составляет эталонный источник – R4 VD1, а правое плечо – следящий делитель R2 R3. В диагональ моста включен участок э – б усилительного транзистора VT2 (УЭ), выполненного по схеме ОЭ с нагрузкой R1. В состоянии покоя мост сбалансирован, напряжение в диагонали моста равно нулю, транзисторы VT1 и VT2 находятся в активном режиме.

Схема работает следующим образом: если UВХ возросло, то это увеличение передаётся на базу VT1, он приоткрывается и возрастает напряжение на нагрузке RH, возрастает ток следящего делителя и падение напряжения на R3. Потенциал эмиттера VT2 фиксирован стабилитроном и повышение потенциала базы приводит к приоткрыванию транзистора VT2, напряжение на его коллекторе снижается, значит уменьшается потенциал базы VT 1, а это вход эмиттерного повторителя, следовательно, уменьшится и напряжение на нагрузке RH. Аналогично схема работает при изменении тока нагрузки. Например, схема находится в состоянии покоя, мост сбалансирован. Пусть ток нагрузки увеличился, увеличилось падение напряжения на регулирующем элементе VT1, уменьшилось напряжение на нагрузке RH и на следящем делителе R2, R3. Уменьшился потенциал на базе VT2, который призакрывается, возрастает потенциал его коллектора т.е. потенциал базы VT 1, а это вход эмиттерного повторителя, следовательно, увеличится и напряжение на нагрузке RH. Баланс измерительного моста восстанавливается.

Если КСН представить как систему автоматического регулирования (рис.4.16) с коэффициентами передачи звеньев по напряжению , то их произведение называется петлевым усилением, т.е.

. (4.15)

Рисунок 4.16 – Схема замещения КСН

Для приращений сигналов справедливы следующие рассуждения и выводы. Если цепь ОС разорвать, то изменения выходного напряжения

. (4.16)

Поэтому, для достижения высокой стабильности должен быть возможно меньше. Это является важной предпосылкой для построения стабилизатора. Если замкнуть цепь ОС, то процесс регулирования можно представить следующей системой уравнений:

(4.17)

Знак минус в первом уравнении говорит о том, что обратная связь – отрицательная.

Решим систему относительно :

(4.18)

Выражение (4.18) называется основным уравнением стабилизатора в установившемся режиме. Очевидно, что для малого изменения выходного напряжения петлевое усиление должно быть возможно большим, но ; , поэтому необходимо иметь . Увеличение , его стремление к единице определяется приближением к . Наоборот, чем ниже , тем меньше и, если , то и цепь обратной связи разрывается. Поэтому нельзя выбирать слишком малым или близким к нулю. Для повышения можно зашунтировать конденсатором , или вместо резистора поставить стабилитрон (так называемый, второй эталон - ), тогда , а и его регулировка невозможна.

Петлевое усиление можно поднять путём замены транзистора VT2 операционным усилителем, а резистора R1 – токостабилизирующим двухполюсником (см. разд. 4.2.1, рис. 4.8).

Коэффициент сглаживания пульсаций может отличаться от коэффициента стабилизации по напряжению. Если верхнее плечо делителя () зашунтировать конденсатором, тогда КД для постоянной составляющей и частоты пульсаций различны, отличаются и петлевые усиления. Кроме того, частота пульсаций может оказаться за полосой пропускания усилителя цепи обратной связи и опять петлевые усиления будут разные.

Очевидно, что в рассмотренной схеме выходное напряжение больше напряжения эталонного источника. Стабилизатор с выходным напряжением меньше эталонного выполняют по схеме рис.4.17.

Рисунок 4.17 – Схема низковольтного КСН

Делитель следит не за выходным напряжением (UВЫХ), а за суммой . поэтому

(4.19)

VD1 подключен к дополнительному источнику . Главное, что бы здесь обеспечивался нормальный режим работы VT2.

КСН – схемы с обратными связями и при определённых условиях они могут возбуждаться, т. е становиться генераторами колебаний. В этом значительную роль играют флуктуации входного напряжения (и тока нагрузки) а также инерционные свойства усилительных каскадов. Обычно выход КСН шунтируют конденсатором СН, что повышает нагрузочную способность при работе на импульсную нагрузку и повышает устойчивость. Ограничение полосы пропускания усилителя цепи ОС также повышает устойчивость, но и снижает частотный диапазон дестабилизирующих воздействий, отрабатываемых стабилизатором. Включение корректирующих конденсаторов СД, С У , С Б показано на рис.4.18. Совокупность корректирующих конденсаторов СД, С У , С Б и СН позволяет всегда обеспечить устойчивость одноконтурных стабилизаторов с высокими статическими параметрами. Увеличение ёмкостей конденсаторов приводит к уменьшению полосы пропускания и ухудшению динамики стабилизатора.

Рисунок 4.18 – Включение корректирующих конденсаторов в схеме КСН

Частотные свойства устойчивого стабилизатора наиболее ярко проявляются при изменении тока нагрузки, поскольку выходное сопротивление стабилизатора является функцией частоты, а ток нагрузки, особенно при импульсном характере нагрузки, занимает полосу частот от 0 до . Зависимость модуля выходного сопротивления стабилизатора от частоты приведена на рис. 4.19.

Рисунок 4.19 – Частотная зависимость модуля выходного сопротивления КСН

Зависимость имеет четыре характерные области. Область I определяется частотными свойствами источника питания стабилизатора. Если фильтр выпрямителя обладает резонансными свойствами на частоте fф, то на этой частоте возрастает выходное сопротивление выпрямителя, что вызывает неустойчивую работу стабилизатора. Область II ограничивается частотой f0 (полоса пропускания стабилизатора). Это область нормальной работы. Область III – область частот, в которой проявляются резонансные свойства стабилизатора в целом. Область VI определяется частотными свойствами конденсатора СН. В областях частот III и VI стабилизатор не отрабатывает дестабилизирующих воздействий.

Обычно полоса пропускания непрерывных (линейных) стабилизаторов составляет сотни Гц…единицы кГц.

Все, рассмотренные нами схемотехнические решения, нашли применение в интегральных стабилизаторах серии К142 (К142ЕН1, К142ЕН2,…). Некоторые из них позволяют регулировать выходное напряжение и наращивать ток нагрузки, другие имеют фиксированные напряжения и токи.





Дата публикования: 2014-10-25; Прочитано: 2873 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...