Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Множественный доступ с кодовым разделением



Как и в случае FHSS, кодирование методом DSSS позволяет мультиплексировать несколько каналов в одном диапазоне. Техника такого мультиплексирования называется множественным доступом с кодовым разделением (Code Division Multiplexing Access, CDMA). Она широко используется в сотовых сетях.

Хотя техника CDMA может применяться совместно с кодированием методом FHSS, на практике в беспроводной сети она чаще сочетается с методом DSSS. Каждый узел сети, работающий по методу CDMA, посылает данные в разделяемую среду в те моменты времени, когда это ему нужно, то есть синхронизация между узлами отсут­ствует. Идея CDMA заключается в том, что каждый узел сети задействует собственное значение расширяющей последовательности. Эти значения выбираются так, чтобы при­нимающий узел, который знает значение расширяющей последовательности передающего узла, мог выделить данные передающего узла из суммарного сигнала, образующегося в результате одновременной передачи информации несколькими узлами. Для того чтобы такую операцию демультиплексирования можно было выполнить, значения расширяющей последовательности выбираются определенным образом. Поясним идею CDMA на примере.

Пусть в сети работает четыре узла: А, В, С и D. Каждый узел использует следующие значения расширяющей последовательности:

А: 0 1 0 1 0 1 0 1

В: 1 0 1 0 0 1 0 1

С: 1 0 0 1 1 0 0 1

D: 1 1 1 1 1 1 1 1

Предположим также, что при передаче единиц и нулей расширяющей последовательности (то есть уже преобразованного исходного кода) используются сигналы, которые являются аддитивными и инверсными. Инверсность означает, что двоичная единица кодируется, например, синусоидой с амплитудой +А, а двоичный ноль — синусоидой с амплитудой -А. Из условия аддитивности следует, что если фазы этих амплитуд совпадут, то при одновременной передаче единицы и нуля мы получим нулевой уровень сигнала. Для упрощения записи расширяющей последовательности обозначим синусоиду с положительной амплитудой значением +1, а синусоиду с отрицательной амплитудой — значением -1. Для простоты допустим также, что все узлы сети CDMA синхронизированы. Таким образом, при передаче единицы исходного кода 4 узла передают в среду такие по­следовательности:

При передаче нуля исходного кода сигналы расширяющей последовательности инвертируются.

Пусть теперь каждый из 4-х узлов независимо от других передает в сеть один бит исходной информации: узел А —> 1, узел В —> 0, узел С—> 0, узел D -»1. В среде 5 сети наблюдается такая последовательность сигналов:

В соответствии со свойством аддитивности получаем:

Если, например, некоторый узел Е хочет принимать информацию от узла А, то он должен использовать свой демодулятор CDMA, задав ему в качестве параметра значение расширяющей последовательности узла А.

Демодулятор CDMA последовательно складывает все четыре суммарных сигнала Si, принятые в течение каждого такта работы. При этом сигнал Si, принятый в такте, на котором код расширения станции А равен +1, учитывается в сумме со своим знаком, а сигнал, принятый в такте, на котором код расширения станции А равен -1, добавляется в сумму с противоположным знаком. Другими словами, демодулятор выполняет операцию скалярного умножения вектора принятых сигналов на вектор значения расширяющей последовательности нужной станции:

Для того чтобы узнать, какой бит послала станция А, осталось нормализовать результат, то есть разделить его на количество разрядов в расширяющей последовательности: 8/8 = 1. Если бы станция хотела принимать информацию от станции В, то ей нужно было бы при демодуляции использовать код расширения станции В (+1 -1 +1 -1 -1 +1 -1 +1):

После нормализации мы получаем сигнал -1, который соответствует двоичному нулю исходной информации станции В.

Мы объяснили только основную идею CDMA, предельно упростив ситуацию. На практике CDMA является весьма сложной технологией, которая оперирует не условными значениями +1 и -1, а модулированными сигналами, например сигналами BPSK. Кроме того, узлы сети не синхронизированы между собой, а сигналы, которые приходят от удаленных на различные расстояния от приемника узлов, имеют разную мощность. Проблема синхронизации приемника и передатчика решается за счет передачи длинной последовательности определенного кода, называемого пилотным сигналом. Для того же, чтобы мощности всех передатчиков были примерно равны для базовой станции, в CDMA применяются специальные процедуры управления мощностью.

Выводы

Беспроводная связь делится на мобильную и фиксированную. Для организации мобильной связи беспроводная среда является единственной альтернативой. Фиксированная беспроводная связь обеспечивает доступ к узлам сети, расположенным в пределах небольшой территории, например здания.

Каждый узел беспроводной линии связи оснащается антенной, которая одновременно является передатчиком и приемником электромагнитных волн.

Электромагнитные волны могут распространяться во всех направлениях или же в пределах опреде­ленного сектора. Тип распространения зависит от типа антенны.

Беспроводные системы передачи данных делятся на четыре группы в зависимости от используемого диапазона электромагнитного спектра: широковещательные (радио-) системы, микроволновые системы, системы инфракрасных волн, системы видимого света.

Из-за отражения, дифракции и рассеивания электромагнитных волн возникает многолучевое распространение одного и того же сигнала. Это приводит к межсимвольной интерференции и много­лучевому замиранию.

Передача данных в диапазонах 900 МГц, 2,4 ГГц и 5 ГГц, которые получили название ISM-диапазонов, не требует лицензирования, если мощность передатчика не превышает 1 Вт.

Беспроводные двухточечные линии связи служат для создания радиорелейных линий, соединения зданий, а также пары компьютеров.

Беспроводные линии связи с одним источником и несколькими приемниками строятся на основе базовой станции. Такие линии используются в мобильных сотовых сетях, а также в системах фик­сированного доступа.

Топология с несколькими источниками и несколькими приемниками характерна для беспроводных локальных сетей.

В системах спутниковой связи используются три группы спутников: геостационарные, среднеорбитальные и низкоорбитальные.

Для кодирования дискретной информации в беспроводных системах прибегают к манипуляции (FSK и PSK), модуляции с несколькими несущими частотами (OFDM) и методам расширения спектра (FHSS и DSSS).

В методах расширения спектра для представления информации используется широкий диапазон частот, это уменьшает влияние на сигналы узкополосных шумов.

На основе методов FHSS и DSSS можно мультиплексировать несколько каналов в одном диапазоне частот. Такая техника мультиплексирования называется множественным доступом с кодовым раз­делением (CDMA).

Вопросы и задания

1. Назовите основные области применения беспроводных линий связи.

2. В чем достоинства и недостатки беспроводной передачи информации по сравнению с проводной?

3. Антенна какого типа является направленной? Варианты ответов: а) параболическая; б) изотропная.

4. За счет чего радиоволны с частотами от 2 до 30 МГц могут распространяться на сотни километров?

5. Какой спектр волн используется для спутниковой связи?

6. Какие атмосферные явления мешают распространению микроволн?

7. Что из ниже перечисленного используется для ненаправленного распространения инфракрасных волн:

а) лазерные диоды;

б) система линз;

в) отражение от потолка;

г) тепловые антенны.

8. Какие препятствия вызывают дифракцию? Варианты ответов:

а) непроницаемые препятствия, размер которых соизмерим с длиной волны;

б) непроницаемые препятствия, размер которых намного больше длины волны;

в) непроницаемые препятствия, размер которых намного меньше длины волны.

9. В каких случаях применяются эллиптические орбиты телекоммуникационных спут­ников?

10. Какими недостатками обладает геостационарный спутник? Варианты ответов:

а) велики задержки сигнала;

б) велико затухание сигнала, что приводит к необходимости использования антенн большого диаметра;

в) мало покрытие территории;

г) плохая связь в районах, близких к северному и южному полюсам.

11. При соблюдении какого условия технология FHSS является высокоскоростной?

12. Какое свойство последовательности Баркера определяет возможность ее использования в технологии DSSS?

13. Назовите основное свойство расширяющих последовательностей, используемых в технологии CDMA.

14. Можно ли в качестве расширяющих последовательностей узлов сети, поддерживающих множественный доступ с кодовым разделением на основе технологии DSSS, использовать значения 100...0,0100...0,0010...0, 00010...0 и т. д.?

15. Предложите 11-битную расширяющую последовательность, отличную от последовательности Баркера, которая, как и последовательность Баркера, позволяет надежно определять начало передачи очередного бита исходной информации.





Дата публикования: 2014-10-25; Прочитано: 1101 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...