Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Код Шеннона



Оптимальным кодом можно определить тот, в котором каждый двоичный символ будет передавать максимальную информацию. В силу формул Хартли и Шеннона максимум энтропии достигается при равновероятных событиях, следовательно, двоичный код будет оптимальным, если в закодированном сообщении символы 0 и 1 будут встречаться одинаково часто.[8]

Рассмотрим в качестве примера оптимальное двоичное кодирование букв русского алфавита вместе с символом пробела «-». Полагаем, что известны вероятности появления в сообщении символов русского алфавита, например, приведенные в таблице 3.

Таблица 3.Частота букв русского языка (предположение)

К. Шеннон и Р. Фано независимо предложили в 1948-1949 гг. способ построения кода, основанный на выполнении условия равной вероятности символов 0 и 1 в закодированном сообщении. [10]

Все кодируемые символы (буквы) разделяются на две группы так, что сумма вероятностей символов в первой группе равна сумме вероятностей символов второй группы (то есть вероятность того, что в сообщении встретится символ из первой группы, равна вероятности того, что в сообщении встретится символ из второй группы).

Для символов первой группы значение первого разряда кода присваивается равным «0», для символов второй группы – равными «1».

Далее каждая группа разделяется на две подгруппы, так чтобы суммы вероятностей знаков в каждой подгруппе были равны. Для символов первой подгруппы каждой группы значение второго разряда кода присваивается равным «0», для символов второй подгруппы каждой группы – «1». Такой процесс разбиения символов на группы и кодирования продолжается до тех пор, пока в подгруппах не остается по одному символу.

Пример кодирования символов русского алфавита приведен в табл. 4

Таблица 4. Пример кодирования букв русского алфавита с помощью кода Шеннна-Фано.

Анализ приведенных в таблице кодов приводит к выводу, что часто встречающиеся символы кодируются более короткими двоичными последовательностями, а редко встречающиеся - более длинными. Значит, в среднем для кодирования сообщения определенной длины потребуется меньшее число двоичных символов 0 и 1, чем при любом другом способе кодирования.

Вместе с тем процедура построения кода Шеннона-Фано удовлетворяет критерию различимости Фано. Код является префиксным и не требует специального символа, отделяющего буквы друг от друга для однозначного него декодирование двоичного сообщения.

Таким образом, проблема помехоустойчивого кодирования представляет собой обширную область теоретических и прикладных исследований. Основными задачами при этом являются следующие: отыскание кодов, эффективно исправляющих ошибки требуемого вида; нахождение методов кодирования и декодирования и простых способов их реализации.

Наиболее разработаны эти задачи применительно к систематическим кодам. Такие коды успешно применяются в вычислительной технике, различных автоматизированных цифровых устройствах и цифровых системах передачи информации.

Заключение

Мы рассмотрели задачу кодирования, которая включает в себя:

1.Обеспечение экономичности передачи информации посредством устранения избыточности.

2. Обеспечение надежности (помехоустойчивости) передачи информации

3.Согласование скорости передачи информации с пропускной способностью канала

Задача кодирования является одним из главных понятий информатики, так как кодирование предшествует передаче и хранению информации, и, соответственно, является основой их успешного осуществления.

При передаче сообщений по каналам связи могут возникать помехи, способные привести к искажению принимаемых знаков. Эта проблема решается с помощью помехоустойчивого кодирования. Помехоустойчивое кодирование передаваемой информации позволяет в приемной части системы обнаруживать и исправлять ошибки. Коды, применяемые при помехоустойчивом кодировании, называются корректирующими кодами. Впервые, исследование эффективного кодирования произвел Клод Шеннон. Для теории связи важнейшее значение имеют две теоремы, доказанные Шенноном.

В работе были рассмотрены эти теоремы, и можно прийти к выводу, что первая – затрагивает ситуацию с кодированием при передаче сообщения по линии связи, в которой отсутствуют помехи, искажающие информацию, т.е. эта теорема является эталоном, какими должны быть помехоустойчивые коды, Вторая теорема относится к реальным линиям связи с помехами.

Если рассмотреть примеры кодирования, на основе первой теоремы Шеннона, то можно прийти к выводам, что это кодирования является достаточно эффективным, так как получаемый код практически не имеет избыточности, но, к сожалению, в реальных линиях связи множество помех, и такой результат недостижим. Поэтому код Шеннона не является таким же эффективным как, например код Хафмена. Но, несмотря на это нужно отметить, что Клод Шеннон был одним из основателей теории кодирования и его работы внесли огромный вклад в развитие информатики.

Список литературы:

1. Журнал "Радио", номер 9, 1999г. Автор: В. Нейман, проф., доктор техн.

наук, г. Москва

2. Кловский Д.Д. Теория передачи сигналов. -М.: Связь, 1984.

3. Кудряшов Б.Д. Теория информации. Учебник для вузов Изд-во ПИТЕР,

2008 320с.

4. Рябко Б.Я Фионов А.Н. Эффективный метод адаптивного

арифметического кодирования для источников с большими алфавитами

// Проблемы передачи информации 1999 Т.35, Вып С.95 - 108.

5. Семенюк В.В. Экономное кодирование дискретной информации СПб.:

СПбГИТМО (ТУ), 2001

6. Дмитриев В.И. Прикладная теория информации. М.: Высшая школа,

1989.

7. Нефедов В.Н Осипова В.А. Курс дискретной математики. М.: МАИ,

1992.

8. Колесник В.Д Полтырев Г.Ш. Курс теории информации. М.: Наука,

2006.





Дата публикования: 2014-10-16; Прочитано: 3668 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...