Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Температура в полуплоскости от равномерно распределенного быстродвижущегося источника теплоты



Для решения многих технологических задач и, в частности, для расчета температурных полей в свариваемых деталях важное значение имеет задача о температурном поле, возникающем в полуплоскости от движущегося равномерно распределенного источника тепла (рис.2.40).

Рис. 2.40. Схема к расчету температуры в полуплоскости от быстродвижущегося равномерно распределенного источника тепла

Значительные упрощения расчета таких температурных полей могут быть достигнуты при больших значениях критерия Pe: Ре= .

Физический смысл принимаемых при этом допущений связан с тем, что при увеличении критерия Пекле (или скорости v движущегося источника тепла) изотермы температурного поля локализуются вблизи оси y и угол наклона их к этой оси уменьшается. Соответственно нормаль к изотерме, указывающая направление теплового потока и градиента температуры, составляет с осью x малый угол jр (рис.2.40). Вследствие этого составляющая теплового потока вдоль оси x существенно больше, чем вдоль оси y. При достаточно больших значениях критерия Ре влиянием перетоков тепла в направлении оси y на температуру, возникающую на поверхности движущейся полуплоскости, можно пренебречь. Пренебрегая перетоками тепла вдоль оси y, элемент полуплоскости шириной Dy можно рассматривать как теплоизолированный полуограниченный стержень, к торцу которого в течение некоторого времени

(2.106)

подводится постоянный тепловой поток плотностью q, а температурное поле полуплоскости как совокупность независимых друг от друга одномерных нестационарных процессов в стержнях.

В связи с этим рассмотрим задачу о температуре неограниченного стержня к торцу которого подводится тепловой поток постоянной плотности.

Эта задача может быть сведена к уже известному решению задачи об одномерном нестационарном температурном поле неограниченного стержня, на торце которого поддерживается постоянная температура. С математической точки зрения эти две задачи отличаются только обозначениями. Поэтому решение для плотности тепловых потоков может быть записано в виде:

(2.107)

С учетом (2.107) получим [1]

, или

. (2.108)

Из (2.108), в частности, следует, что при постоянном тепловом потоке на торце "стержня" его температура прямо пропорциональна плотности теплового потока, обратно пропорциональна коэффициенту аккумуляции тепла и будет повышаться с течением времени пропорционально корню квадратному от времени нагрева

(2.109)

где

Переход от одномерной нестационарной задачи к квазистационарной двухмерной осуществляется заменой переменной (2.106)

. (2.110)

Как следует из (2.3.5) при постоянной плотности теплового потока q увеличение скорости v источника тепла приводит к уменьшению температуры.





Дата публикования: 2014-10-25; Прочитано: 506 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...