Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Тема 11. Микросотовые системы мобильной связи



Европейский стандарт DECT (Digital European Cordless Telecommunications) разработан Европейским Институтом Стандартов в области Связи (ETSI). Первая редакция стандарта DECT была принята в 1992 году и с тех пор стандарт продолжает развиваться и совершенствоваться в части расширения набора предоставляемых услуг и взаимодействия с сетями различных типов.

 
 

DECT укрепил свои позиции как глобальный стандарт беспроводного доступа - необходимый частотный диапазон для DECT выделен уже более чем в 110 странах мира. Сегодня на рынке представлено свыше 200 различных продуктов в стандарте DECT. Можно с уверенностью сказать, что он представляет собой прочную, прогрессивную основу для развития беспроводной связи, обладая при этом достаточной гибкостью для удовлетворения новых потребностей рынка.

В 2000 году объем продаж терминального оборудования DECT систем увеличился до 30 млн. терминалов.

Основным рынком DECT остается Европа. Результаты маркетингового исследования Strategy Analytics убедительно свидетельствуют о бесспорном лидерстве DECT в этом регионе:

- европейские пользователи сегодня отдают предпочтение телефонам DECT, продажи которых превысили продажи аналоговых радиотелефонов – более 60 % всех продаваемых радиотелефонов работают в стандарте DECT;

- в Германии, которая задает тенденции на рынке DECT, более 80 % продаваемых радиотелефонов - это DECT-телефоны;

В России, как и во всем мире, растет интерес к стандарту DECT со стороны операторов и пользователей. Свидетельством тому является возросшая рекламная деятельность поставщиков оборудования и операторов местных сетей телефонной связи, популяризация стандарта DECT в специальных изданиях и средствах массовой информации.

Большую роль в достижении такого успеха сыграл DECT Форум – международная ассоциация ведущих телекоммуникационных операторов и производителей оборудования. DECT Форум ставит своей целью продвижение стандарта DECT как самого прогрессивного из всех существующих сегодня стандартов беспроводной связи. DECT Форум предоставляет уникальную возможность для обмена информацией и опытом между органами стандартизации и регулирования, операторами, пользователями и производителями DECT-оборудования.

DECT Форум объединяет усилия 35 крупных компаний и организаций из разных стран, 13 локальных отделений DECT Форума работают во всех крупных регионах мира. Рабочая группа по маркетингу представляет информацию из первых рук на Internet-странице и в бюллетенях DECT Форума, участвует в проведении конференций. Технические рабочие группы организуют полевые испытания и исследования в области возможностей сосуществования DECT с другими технологиями связи. Совместно с Европейским институтом стандартов связи DECT Форум участвует в разработке новых профилей и приложений DECT для удовлетворения новых потребностей рынка (таких, как высокоскоростная передача данных, мультимедиа и др.). Работая в тесном контакте с Международным союзом электросвязи, DECT Форум способствует органичному вхождению DECT в систему мобильной связи третьего поколения.

Преимущества выбора DECT

- Качество проводной линии связи – 32 кБит/с ADPCM

- Самая высокая скорость передачи данных среди всех TDMA-стандартов

- Возможность создания различных систем на основе DECT:

- домашние беспроводные многотерминальные системы, которые также подходят для малого офиса,

- микросотовые беспроводные корпоративные системы (офисные и учрежденческие АТС с радиодоступом),

- микросотовые системы общего пользования (СТМ),

- системы фиксированного радиодоступа (WLL) и др.

- Сосуществование различных некоординируемых DECT-систем в общем частотном диапазоне без необходимости частотного планирования

- Совместимость оборудования разных производителей (при наличии GAP)

- Обеспечение перехода из соты в соту без разрыва соединения (хэндовер)

- Возможность обслуживания одной трубки в разных сетях (частных и общего пользования)

- Обеспечение большого трафика - до 10,000 Эрл/км2.

- Совместимость с другими радиосистемами

- Отсутствие канала управления - устойчивость к радиопомехам

- Низкий уровень излучения - безопасность для здоровья

Помимо предоставления услуг, характерных для традиционной телефонии, которые преобладают сегодня на рынке беспроводной связи, сегодня рассматриваются приложения по передаче данных как новый сегмент рынка. Уже сейчас устройства на базе стандарта DECT обеспечивают передачу данных на скорости 552 кБит/с. Новые методы модуляции позволят в ближайшее время увеличить скорость до 2 МБит/с.

В Европейском институте стандартов связи завершена разработка стандартов DPRS (DECT Packet Radio Services) и DMAP (DECT Multimedia Access Profile). DPRS создает основу для сопряжения всех услуг беспроводной пакетной передачи данных, которые предоставляются через интерфейс DECT, независимо от того, в каком приложении (домашний сектор, домашний офис, малый офис, корпоративный сектор, системы общего пользования) используется этот продукт, и, следовательно, значительно подтолкнет развитие рынка DECT-продуктов передачи данных. Стандарт DMAP представляет собой надстройку над DPRS, GAP и базовым стандартом DECT и описывает более специфический набор мультимедийных услуг для приложений "Домашний сектор, домашний офис, малый офис". DMAP станет первым из новой категории профилей доступа для конкретных приложений (Application Specific Access Profiles - ASAP), которые будут гарантировать совместимость DECT-оборудования, обеспечивающего комплексные услуги.

В современном мире, в котором Internet становится необходимостью, а беспроводное подключение - обычной функцией многих электронных устройств, технологии беспроводной связи могут удовлетворить многие ожидания расширяющегося рынка беспроводной передачи данных, среди которых - совместимость устройств от разных производителей. Именно поэтому в ETSI в рамках созданной рабочей группы DECT/Data ведется разработка DECT-профиля доступа в Internet (DECT Internet Access Profile).

Стандарт DECT станет одной из основных составляющих систем связи 3-го поколения. Он будет играть центральную роль в интеграции услуг фиксированной и мобильной связи. Ряд исследователей полагает, что технологии DECT будут особенно актуальны в переходный период от систем 2G к системам 3G мобильной связи. В ноябре 1999 года на встрече в Хельсинки МСЭ утвердил DECT в качестве одного из пяти радиоинтерфейсов для системы мобильной связи третьего поколения.

С самого начала DECT разрабатывался как средство обеспечения доступа к телекоммуникационной сети любого типа, и, таким образом, поддерживает в отличии от других стандартов разнообразные приложения и услуги. Среди приложений DECT - системы для дома и малого офиса, микросотовые корпоративные системы, системы абонентского радиодоступа (WLL), системы доступа к сети GSM, микросотовые системы общего пользования (CTM), системы доступа к локальной сети, предоставляющие голосовую телефонию, факс, модем, электронную почту, Internet, X.25 и многие другие перспективные услуги.

Структура DECT - систем

 
 

Типовая архитектура простейшей DECT-системы приведена на рис. 5.

Рисунок 1

Контроллер предназначен для сопряжения системы DECT с внешними сетями, например, городской и/или учрежденческой АТС. При этом ЦКС, как правило, обеспечивает преобразование протоколов сигнализации между АТС и системой DECT. В некоторых случаях для этих целей используются специальные устройства – конвертеры протоколов. Кроме того, в ЦКС осуществляется преобразование речевой информации ADPCM  PCM при сопряжении по цифровым интерфейсам и ADPCM  аналоговый сигнал при сопряжении по аналоговым интерфейсам.

БС – Базовая станция (в иностранной литературе они называются – Radio Fixed Part) обеспечивают требуемое радиопокрытие. БС подключается к контроллеру по одной или двум парам проводов. Базовая станция представляет собой приемопередатчик, обеспечивающий одновременную работу по 4 – 12 каналам, работающий на две пространственно разнесенные антенны. БС выполняются в двух вариантах – для внутреннего и наружного размещения.

УД – Устройства доступа представляют собой мобильную трубку или стационарный абонентский терминал, который иногда именуется «радиорозеткой».

Для увеличения зоны покрытия базовой станции может также применятся ретранслятор (репитер).

Технические аспекты DECT

Стандартные характеристики систем DECT

Таблица 1

Рабочий спектр 1880..1900 MГц
Количество частот  
Разнос частот 1,728 MГц
Метод доступа MC/TDMA/TDD
Частотное планирование не требуется
Число каналов на одну частоту 24 (12 дуплексных каналов)
Длительность фрейма 10 ms
Скорость передачи 1,152 Mbps
Метод модуляции GMSK (BT = 0,5)
Сжатие голоса ADPСM (G.721) - 32 Кбит/сек
Выходная мощность 10 мВт - средняя (пиковая мощность не более 250 мВт)
Достижимая дальность до 20 км
Гарантированная (разрешенная) дальность до 5 км
Мобильность полная в рамках одной системы (без перерыва разговора – хэндовер), в нескольких системах с перерывом разговора (роуминг)
Профили доступа GAP, RAP, GIP, IAP, DMAP, DPRS, и др.

Принцип MC/TDMA/TDD.

Радиоинтерфейс DECT основывается на методологии радиодоступа с использованием нескольких несущих, принципа множественного доступа с временным разделением и принципа дуплекса с временным разделением (MC/TDMA/TDD). В стандарте DECT в выделенном диапазоне 1880-1990 МГц используется 10 частотных каналов (MC - Multi Carrier). Временной спектр для DECT подразделяется на временные кадры (фреймы), повторяющиеся каждые 10 мс (рис. 3). Фрейм состоит из 24 временных слотов, каждый из которых доступен индивидуально (TDMA - Time Division Multiple Access).


Рисунок 2

В базовой речевой услуге DECT два временных слота - с разделением в 5 мс - образуют дуплексную пару для обеспечения 32 кБит/с соединений (ADPCM - адаптивная дифференциальная импульсно-кодовая модуляция - G.726). Для реализации базового стандарта DECT временной фрейм в 10 мс разделяется на две половины (TDD – Time Division Duplex) - первые 12 временных слотов используются для передачи БС (“связь вниз”), а остальные 12 - для передачи АРБ (“связь вверх”).

Структурой TDMA обеспечивается до 12 одновременных голосовых соединений DECT (полный дуплекс) на каждую БС, что дает значительные ценовые преимущества по сравнению с технологиями, позволяющими только одно соединение на БС (например, CT2). Благодаря усовершенствованному радиопротоколу, DECT может предлагать полосы частот различной ширины, соединяя несколько каналов в одну несущую.

Использование радиоспектра

При использовании принципа MC/TDMA/TDD для базовой спецификации DECT (10 частотных и 12 временные номиналов) устройству DECT в любой момент доступен общий ресурс из 120 дуплексных каналов. При высокой плотности установки базовых станций DECT (например, на расстоянии 25 м в идеальной модели покрытия в форме шестиугольника) с учетом низкого коэффициента повторного использования канала (C/I = 10 дБ) можно достичь емкости трафика для базовой технологии DECT приблизительно до 10 000 Эрланг/км2 при отсутствии необходимости частотного планирования. Инсталляция оборудования DECT упрощена, так как необходимо учитывать только требования к радиопокрытию и трафику.

Динамический выбор и динамическое выделение канала

Вместо частотного планирования используется механизм Непрерывного Динамического Выбора и Распределения Каналов (CDCS/CDCA). Суть этого механизма заключается в том, что каналы выбираются динамически из всего набора каналов по таким показателям, как качество прохождения сигнала и уровень помех. Причем канал не закрепляется за соединением на все время, он может меняться по мере необходимости. Происходит это следующим образом.

Каждая БС непрерывно сканирует приемные таймслоты всех 120 каналов, измеряет уровень принятого сигнала (RSSI — Received Signal Strength Indicator) и выбирает канал с минимальным уровнем (свободный канал без помех). В этом канале БС излучает служебную информацию, которая, в числе прочих, содержит данные:

- для синхронизации АРБ;

- об идентификаторе системы;

- о возможностях системы;

- о свободных каналах;

- пейджинговую.

Анализируя эту информацию, АРБ находит свою БС и прописывается к ней. При выходе из зоны действия одной БС происходит поиск следующей. Таким образом, АРБ всегда прописан к той или иной БС своей или дружественной системы. Далее АРБ синхронно с БС начинает непрерывно сканировать все 120 приемных таймслотов и измерять силу сигнала в каждом из них. Номера каналов с наименьшими RSSI заносятся в память. Одновременно в памяти находятся не менее двух таких каналов.

При необходимости организации исходящей связи АРБ направляет запрос БС, в которой она в данный момент прописана, предлагая установить связь в одном из свободных, с точки зрения АРБ, каналов. Если этот канал отвергается БС, то АРБ предлагает следующий из списка свободных. После согласия БС на установление соединения по одному из предложенных каналов происходит обмен сигнализационной и другой служебной информацией, а затем установление соединения и разговор.

Организация входящей связи осуществляется аналогичным образом. АРБ непрерывно анализирует "пейджинговое" сообщение на наличие «своего» входящего вызова. После распознавания входящего вызова АРБ посылает запрос на установление связи в одном из свободных каналов. Таким образом, выбор канала для установления соединения происходит динамически и только по инициативе и под управлением АРБ. Этот механизм называется непрерывным динамическим выбором канала (CDCS).

Канал, в котором происходит разговор, не является постоянно выделенным на все время соединения. По тем или иным причинам (например, ухудшение качества связи при перемещении АРБ в зону «тени») АРБ может сменить канал. При этом АРБ выбирает канал из списка свободных и предлагает его БС. При согласии БС происходит переход на новый канал. Переход может происходить и по инициативе БС. При этом БС о своем желании перейти на новый канал сообщает АРБ, далее все происходит так, как описано выше, т.е. выбор нового канала осуществляется АРБ.

Если в процессе соединения новый канал запрашивается у той же БС, то переход называется "intercell handover", а если у другой БС — то "intracell handover". Этот механизм называется непрерывным динамическим распределением каналов (CDCA).

Хендовер в DECT системе происходит мягким способом. Это значит, что во время хендовсра между АРБ и системой одновременно работают два канала: «старый» и «новый». В какой-то момент времени информация между АРБ и системой передается одновременно по обоим каналам. Только после успешного перехода на «новый» канал происходит деактивация «старого». Надо отметить, что хендовер происходит не только при ухудшении качества связи или при разрыве соединения, но и в том случае, когда АРБ находит лучший с его точки зрения канал. Таким образом, для соединения всегда используется лучший свободный канал.

Механизм CDCS/CDCA существенно отличает DBCT от сотовых систем связи: управление каналами осуществляется не центральным контроллером, а мобильными терминалами.

Уникальная возможность DECT по динамическому выбору и распределению каналов гарантирует использование только лучшего канала. Эта способность DECT позволяет сосуществовать нескольким системам в одной и той же полосе частот, при сохранении в каждой из них высокого качества и безопасности связи. Кроме того, этот механизм существенно увеличивает емкость трафика системы за счет минимизации каналов с несколькими путями распространения. Особенно это важно для офисных приложений, где происходит многократное отражение радиосигнала от стен помещения.

Метод MC/TDMA/TDD совместно с механизмом CDCS/CDCA обеспечивает высокую емкость DECT системам даже в условиях высокого трафика и сложной помеховой обстановки. При этом высокого качества услуг добиваются без использования частотного планирования.

Разнесенные антенны

Хэндовер в DECT – это механизм ухода от каналов, подверженных воздействию помех, или каналов с низким уровнем сигнала. Однако хэндовер происходит недостаточно быстро, чтобы противодействовать ситуациям быстрого замирания. Для борьбы с быстрыми интерференционными замираниям (БИЗ) стандартом DECT предусматривается механизм пространственного разнесенного приема. БИЗ возникают в результате интерференции нескольких лучей в точку приема, которая перемещается относительно БС. В результате чего меняется разность хода между этими лучами и, как следствие этого, уровень суммарного сигнала претерпевает колебания, которые могут достигать 30 и более дБ. При использовании двух пространственно разнесенных антенн разность хода лучей от каждой из них в точке приема будет различной. В офисных и WLL системах к каждой БС подключаются две коммутируемые пространственно разнесенные в горизонтальной плоскости антенны, причем разнос антенн в офисных системах приблизительно равен  (длине волны), а в WLL системах – 10 . Поэтому эффективность этого метода в офисных системах сказывается при малых удалениях. В системах WLL АРБ стационарны и причина замираний заключается в воздействии эффекта рефракции на разность хода прямого и отраженного лучей. Из теории известно, что при разносе антенн на 10  и более суммарные сигналы, принимаемые каждой из антенн практически не коррелированны. Переключение антенн и выбор рабочего канала происходит под управлением АРБ.

Защищенность

В настоящее время все больше внимания уделяется проблемам защищенности систем связи к несанкционированному доступу. Стандарт DECT предусматривает меры защиты доступности телекоммуникационных систем, характерной для беспроводной связи.

Перечень штатных услуг и процедур по обеспечению безопасности в системах стандарта DECT включает в себя:

- прописку АРБ;

- аутентификацию АРБ;

- аутентификацию БС;

- взаимную аутентификацию АРБ и БС;

- аутентификацию пользователя;

- шифрование данных.

Прописка – это процесс, благодаря которому система допускает конкретный АРБ к обслуживанию. Оператор сети или сервис-провайдер обеспечивает пользователя АРБ секретным ключом прописки (PIN-кодом), который должен быть введен как в КБС, так и в АРБ до начала процедуры прописки. До того, как трубка инициирует процедуру фактической прописки, она должна также знать идентификатор БС, в которую она должна прописаться (из соображений защищенности процедура прописки может быть организована даже для системы с одной БС). Время проведения процедуры обычно ограничено, и ключ прописки может быть применен только один раз, это делается специально для того, чтобы минимизировать риск несанкционированного использования.

Прописка в DECT может осуществляться “по эфиру”, после установления радиосвязи с двух сторон происходит верификация того, что используется один и тот же ключ прописки. Происходит обмен идентификационной информацией, и обе стороны просчитывают секретный аутентификационный ключ, который используется для аутентификации при каждом установлении связи. Секретный ключ аутентификации не передается по эфиру.

АРБ может быть прописан на нескольких базовых станциях. При каждом сеансе прописки, АРБ просчитывает новый ключ аутентификации, привязанный к сети, в которую он прописывается. Новые ключи и новая информация идентификации сети добавляются к списку, хранящемуся в АРБ, который используется в процессе соединения. Трубки могут подключиться только к той сети, в которую у них есть права доступа (информация идентификации сети содержится в списке).

В процессе аутентификации любого уровня используется криптографическая процедура ''запрос-ответ'', позволяющая выяснить, известен ли проверяемой стороне аутентификационный ключ.

Аутентификация АРБ позволяет предотвратить его неправомочное использование (например, с целью избежать оплаты услуг) или исключить возможность подключения похищенного или незарегистрированного АРБ.

Аутентификация происходит по инициативе БС при каждой попытке установления соединения (входящего и исходящего), а также во время сеанса связи. Сначала БС формирует и передает запрос, содержащий некоторый постоянный или сравнительно редко меняющийся параметр (64 бита), и случайное число (64 бита), сгенерированное для данной сессии.

Затем в БС и АРБ по одинаковым алгоритмам с использованием аутентификационного ключа К вычисляется так называемый аутентификационный ответ (32 бита). Этот вычисленный (ожидаемый) ответ в БС сравнивается с принятым от АРБ, и при совпадении результатов считается, что аутентификация АРБ прошла успешно.

Аутентификация БС исключает возможность неправомочного использования станции. С помощью этой процедуры обеспечивается защита служебной информации (например, данных о пользователе), хранящейся в АРБ и обновляемой по команде с БС. Кроме того, блокируется угроза перенаправления вызовов абонентов и пользовательских данных с целью их перехвата.

Алгоритм аутентификации БС аналогичен последовательности действий при аутентификации АРБ.

Взаимная аутентификация может осуществляться двумя способами:

- При прямом методе последовательно проводятся две процедуры аутентификации АРБ и БС;

- Косвенный метод в одном случае подразумевает комбинацию двух процедур - аутентификации АРБ и шифрования данных (поскольку для шифрования информации необходимо знание аутентификационного ключа К), а в другом - шифрование данных с использованием статического ключа SCK (Static Cipher Key), известного обеим станциям.

Аутентификация пользователя позволяет выяснить, знает ли пользователь АРБ свой персональный идентификатор. Процедура инициируется БС в начале вызова и может быть активизирована во время сеанса связи. После того, как пользователь вручную наберет свой персональный идентификатор UPI (User Personal Identity), и в АРБ с его помощью будет вычислен аутентификационный ключ К, происходит процедура, аналогичная последовательности действий при аутентификации АРБ.

Во всех описанных процедурах аутентификационный ответ вычисляется по аутентификационному запросу и ключу аутентификации К в соответствии со стандартным алгоритмом (DSAA-DECT Standard Authentication Algorithm) или любым другим алгоритмом, отвечающим требованиям безопасности связи. Алгоритм DSAA является конфиденциальной информацией и поставляется по контракту с ETSI. Использование другого алгоритма будет ограничивать возможности абонентских станций, так как возникнут трудности при роуминге в сетях общего пользования DECT.

Аутентификационный ключ К является производной от одной из трех величин или их комбинаций, приведенных ниже.

1. Абонентский аутентификационный ключ UAK (User Authentication Key) длиной до 128 бит. UAK является уникальной величиной, содержащейся в регистрационных данных пользователя. Он хранится в ПЗУ абонентской станции или в карточке DAM (DECT Authentication Module).

2. Аутентификационный код АС (Authentication Code) длиной 16-32 бита. Он может храниться в ПЗУ абонентской станции или вводиться вручную, когда это требуется для проведения процедуры аутентификации.

Необходимо отметить, что нет принципиальной разницы между параметрами UAK и АС. Последний обычно используется в тех случаях, когда требуется довольно частая смена аутентификационного ключа.

3. Персональный идентификатор пользователя UPI (User Personal Identity) длиной 16-32 бита. UPI не записывается в устройства памяти абонентской станции, а вводится вручную, когда это требуется для проведения процедуры аутентификации. Идентификатор UPI всегда используется вместе с ключом UAK.

Шифрование данных обеспечивает криптографическую защиту пользовательских данных и управляющей информации, передаваемых по радиоканалам между БС и АРБ.

В АРБ и БС используется общий ключ шифрования СК (Cipher Key), на основе которого формируется шифрующая последовательность KSS (Key Stream Segments), накладываемая на поток данных на передающей стороне и снимаемая на приемной. KSS вычисляется в соответствии со стандартным алгоритмом шифрования DCS (DECT Standard Cipher) или любым другим алгоритмом, отвечающим требованиям криптографической стойкости. Алгоритм DSC является конфиденциальной информацией и поставляется по контракту с ETSI.

В зависимости от условий применения систем DECT могут использоваться ключи шифрования двух типов: вычисляемый – DCK (Derivation Cipher Key) - и статический – SCK (Static Cipher Key). Статические ключи SCK вводятся вручную абонентом, а вычисляемые DCK обновляются в начале каждой процедуры аутентификации и являются производной от аутентификационного ключа К. В ПЗУ абонентской станции может храниться до 8 ключей.

Статический ключ обычно используется в домашних системах связи. В этом случае SCK является уникальным для каждой пары ''абонентская /базовая станция'', формирующей домашнюю систему связи. Рекомендуется менять SCK один раз в 31 день (период повторения номеров кадров), иначе риск раскрытия информации существенно возрастает.

Организация протоколов DECT

Архитектура протоколов DECT включает:

- физический уровень (PHL Layer);

- уровень доступа к среде (MAC Layer);

- уровень управления звеном передачи данных (DLC layer);

- сетевой уровень (NWK. layer);

- прикладные уровни (Application profiles).

Физический уровень

Первый уровень, PHL, обеспечивает среду для связи АРБ с БС и описан в стандарте ETS 300 174-2. Этот стандарт определяет параметры радиотракта DECT. В частности, в стандарте определены диапазон частот, излучаемая мощность, метод модуляции, структура временного разделения TDMA и др.

Именно PHL уровень отвечает за механизм MC/TDMA/TDD.

Для обеспечения высокоскоростной передачи данных (до 2Мбит/с) базовый стандарт ETS 300 175 был дополнен методом высокоскоростной передачи на основе фазовой модуляции. Используются две схемы модуляции: 4-уровневая (/4-DQPSK) и 8-уровневая (/8—D8PSK). Высокоуровневая модуляция (4-х и 8-ми уровневая) используется только для модуляции информационного канала (данные пользователя), а для модуляции каналов синхронизации и управления используется частотная манипуляция. Таким образом, обеспечивается совместимость новых систем с высокоуровневой модуляцией с существующими системами.

Каждый таймслот (рис. 4) содержит защитный интервал длительностью 25 мкс, 32 бита синхронизации (SYN), 64 бита управления (С) и биты данных (В). Поскольку биты синхронизации присутствуют в каждом физическом канале, синхронизация может проводиться перед каждым физическим каналом. Биты С и В образуют 2 логических канала соответственно для управления и передачи пользовательских данных (как в ISDN).

Рисунок 3

Уровень доступа к среде

Уровень доступа к среде отвечает за установление радиоканала между АРБ и БС. Основными функциями этого уровня являются:

- установление соединений;

- обеспечение сигнализации;

- управление хендовером.

Именно MAC уровень отвечает за "мягкий" хендовер и механизм CDCS/CDCA. Кроме того, MAC уровень обеспечивает канал для передачи пейджинговой информации и сигнализации.

Уровень управления звеном передачи данных

Уровень DLC отвечает за надежную передачу управляющей информации по физическому каналу. На этом уровне решаются задачи по:

- защите передаваемых данных от ошибок;

- управлению качеством физического соединения;

- управлению процедурой выбора канала на МАС уровне.

На уровнях MAC и DLC используются так называемые протокольные блоки данных, состоящие из:

- заголовка;

- поля данных MAC уровня;

- поля данных DLC уровня;

- циклического проверочного кода (CRC).

Заголовок сообщения определяет тип сообщения и тип DECT системы (домашняя, офисная или общего пользования). Кроме того, передается идентификатор системы, информация о поддерживаемых функциях системы и пейджинговая информация.

Сетевой уровень

Этот уровень отвечает за сигнализацию и осуществляет:

- управление уровнями MAC и DLC;

- управление вызовами;

- управление мобильностью (внешний хендовер, роуминг и т.д.);

- передачу информации с/без установления соединения;

- обеспечение ДВО.

Для обеспечения внутреннего хендовера не требуется участие третьего уровня, т.к. за это отвечает только второй уровень. В этом заключается основное (принципиальное) отличие DECT от GSM.

Профили приложений DECT

В профилях приложений содержатся дополнительные спецификации, определяющие как эфирный интерфейс DECT должен быть использован в конкретных приложениях. Стандартные сообщения и суб-протоколы были созданы из набора средств базового стандарта и подстроены под конкретные приложения с целью обеспечения максимальной совместимости оборудования DECT от разных производителей. Помимо самих профилей ETSI также разработал спецификации тестов на соответствие профилю, позволяющие проводить всестороннее тестирование оборудования DECT, претендующее на удовлетворение требованиям профиля.

Профили приложений определяют дополнительную спецификацию протокольного стека DECT для конкретных приложений. Хотя базовый стандарт DECT, определенный в ETS 300 175, обеспечивает возможность реализации широкого спектра услуг, основная цель профилей приложения — обеспечить совместимость оборудования разных производителей. Существуют следующие основные профили DECT, определенные ETSI:

- GAP (Generic Access Profile);

- CAP (CTM Access Profile);

- IAP и IIP (DECT/ISDN Interworking profiles);

- GIP (DECT/GSM Interworking Profile);

- DSP (Data Service Profile);

- RAP (Radio Local Loop Access Profile);

- DMAP (DECT Multimedia Access Profile);

- DPRS (DECT Packet Radio Services).

GAP как основной профиль доступа был разработан для таких приложений DECT как домашние и офисные системы. GAP является главным профилем доступа DECT, предназначенным для использования в системах, поддерживающих телефонные услуги независимо от типа присоединенной сети. Он определяет минимум необходимых требований к АРБ и БС, обеспечивающих их совместимость. В GAP определены процедуры для установления и разрушения входящих и исходящих соединений, для поддержания мобильности, включая роуминг.

Хотя стандарт DЕCT определяет технологию радиодоступа, обеспечивающую мобильность, в нем не рассмотрены сетевые аспекты системы. Поэтому технология DECT может быть использована для доступа в любые сети. GIP описывает способ подключения сетей DECT к сети GSM. Такой доступ обеспечивается интерфейсом А сети GSM (к МSС). При этом сеть GSM воспринимает DECT как систему базовых станций (ВSС).

Использование этого профиля обеспечивает два преимущества. Во-первых, появилась возможность строительства мобильных сетей DECT на основе наземной инфраструктуры сетей GSM. При этом существенно снижаются затраты на создание инфраструктуры сете DECT поскольку сети GSM имеют практически глобальное распространение и постоянно увеличивают охват территорий. Во - вторых, для операторов сетей GSM появилась возможность использования дуальных мобильных терминалов GSM/DECT для увеличения трафика, так как сети DECT поддерживают очень высокую плотность трафика. Сети, построенные на основе DECT и GSM, обладают такими качествами, как высокая плотность трафика для малоподвижных абонентов в местах наибольшего скопления абонентов за счет подсистемы базовых станций DЕCT, большая площадь радиопокрытия и высокая мобильность за счет подсистемы базовых станций GSM.

В настоящее время рассматривается другой способ взаимодействия сетей GSM и DEСТ через ISDN сети. Этот подход основан на протоколе DSS1+, являющимся расширением протокола DSS1.

При разработке протоколов стандарта DECT был учтен богатый опыт, накопленный при создании протоколов для сетей ISDN. Поэтому предполагается тесное взаимодействие ISDN и DECT. Такое взаимодействие определяется профилями IАР и IIP. Оба профиля поддерживают одинаковый набор услуг. Основное отличие между ними заключается в способе соединения.

Первый из них ориентирован на доступ к услугам сети ISDN посредством стандартного терминала DECT. При этом со стороны сети ISDN терминал DECT виден как обычный терминал ISDN с соответствующими возможностями. Преимущества данного профиля заключаются в том, что для получения услуг ISDN используется только один трафиковый канал DECT. Информационный канал ISDN (В канал) шириной 64 кБит/с передается в канал «данных пользователя» DECT (рис. 4) путем преобразования кодирования РСМ в ADРCM. Очевидно, что этот профиль может обслуживать только речевые терминалы.

Второй профиль (IIP) называется профилем промежуточной системы и используется для подключения стандартного терминала ISDN к сети ISDN посредством радиоинтерфейса DECT. При этом появляется возможность подключения и терминалов передачи данных на скорости до 64 кбит/с. Недостатком этого профиля является неэффективное использование радиоспектра. Для организации информационного канала используются два трафиковых канала DECT. Кроме того, для отображения канала сигнализации (D канала ISDN) выделяется еще один канал. Таким образом, для одного соединения используются 3 трафиковых канала DECT.

В рамках этого профиля возможна организация стандартной канальной структуры 2B+D базового доступа ISDN путем выделения 5 трафиковых каналов DECT. При этом DECT обеспечивает стандартное сетевое окончание ISDN с интерфейсом SO. Преимуществом данного профиля является возможность использования любого стандартного терминала ISDN, в том числе и терминалов передачи данных.

Для систем абонентского радиодоступа (WLL) на основе технологии DECT разработан профиль RAP. RAP определяет протоколы и методы предоставления услуг сетей общего пользования конечным пользователям с использованием технологии DECT. RAP определяет два типа сервиса:

- базовые телефонные услуги, включая передачу данных с помощью модемов на скоростях вплоть до V.34;

- широкополосные услуги, включая ISDN и передачу данных с коммутацией пакетов.

Услуги предоставляются через стандартный АРБ DECT, аналогично ISDN.

В связи с тем, что WLL на основе DECT пользуются большой популярностью в мире, в ETSI рассматривается вопрос о расширении возможностей стандарта DECT по поддержке удаленных терминалов (более 5 км). На данный момент предлагается механизм "усовершенствованной схемы синхронизации", обеспечивающий связь на расстояниях до 16 км. Достоинство этого предложения заключается в сохранении совместимости с существующими системами. Таким образом, DECT является очень привлекательной технологией для создания систем WLL с точки зрения экономической эффективности, простоты планирования, монтажа и эксплуатации.

Для построения сетей доступа на основе технологии DECT определен профиль доступа в сети мобильных терминалов (СТМ). СТМ обеспечивает роуминг терминалов между сетями доступа DECT. В местах, где обеспечивается радиопокрытие DECT системой (домашней, офисной или общего пользования), беспроводный телефон может обслуживать как входящие, так и исходящие вызовы. При этом мобильный терминал регистрируется только в одной системе с одним телефонным номером. Таким образом, обеспечивается связь в любом месте, где присутствует DECT система. Причем для терминала во всех сетях сохраняется один и тот же сетевой номер, поэтому входящие звонки не теряются.

Основное отличие CAP от GIP заключается в том, что СТМ обеспечивает мобильность не только в пределах сети GSM, но может взаимодействовать с любой сетью, поддерживающей мобильность. Примерами таких сетей являются сети ISDN с расширением поддержки мобильности (протокол DSSI+) и сети ОКС-7 (INAP и MAP).

Надо отметить, что CAP является надмножеством GAP, что обеспечивает совместимость с GAP терминалами, т.е. сохраняется преемственность между GAP и CAP.

Интеграция DECT систем с сетями передачи данных (СПД) обеспечивает пользователям СПД новое качество — мобильность. Taк как существует большое разнообразие СПД, то ETSI определил ряд профилей передачи данных DSP, которые отличаются по предоставляемым услугам и степени мобильности. По степени мобильности профили подразделяются на два класса:

- без поддержки мобильности в пределах одного БРБ;

- с поддержкой мобильности в частных сетях и сетях об-щего пользования.

По предоставляемым услугам профили передачи данных делятся на 6 типов:

- низкоскоростная передача данных с frame relay (до 24,6 кБит/с);

- высокоскоростная передача данных с frame relay (до 552 кБит/с, в будущем - до 2 МБит/с);

- передача данных на основе коммутации пакетов;

- прозрачная передача данных;

- передача коротких сообщений с/без подтверждения;

- услуги телесервиса (например, FAX).

DMAP разработан в первую очередь для организации беспроводного доступа в сети Internet через ISDN сети и поддержания речевых терминалов и терминалов передачи данных DECT. Поэтому базируется DMAP на протоколах ISDN, GAP и DSP.

Этот профиль тесно связан с компьютерной технологией, в частности ноутбуками. Потому для обеспечения совместимости и упрощения доступа в терминале эмулируется клиент САРI (v. 1.1/2.0), а в базовой станции — сервер САРI.

DPRS создает основу для сопряжения всех услуг беспроводной пакетной передачи данных, которые предоставляются через интерфейс DECT, независимо от того, в каком приложении (домашний сектор, домашний офис, малый офис, корпоративный сектор, системы общего пользования) используется этот продукт, и, следовательно, значительно подтолкнет развитие рынка DECT-продуктов передачи данных.

Особенности сопряжения систем DECT с внешними сетями

Как уже неоднократно отмечалось выше, стандарт DECT – это одно из последних достижений в области цифровой связи. Наиболее эффективно системы DECT работают при сопряжении именно с цифровыми сетями. Однако, на данный момент достаточно типичной является ситуация, когда оборудование DECT необходимо подключать по аналоговым абонентским линиям. Особенно это характерно для домашних радиотелефонов и офисных систем небольшой емкости. Следует отметить, что и для систем WLL в России в настоящий момент следует ориентироваться на аналоговые АЛ. Структура коммутационного оборудования ГАТС в целом по России такова, что только около 32 % АТС цифровые, а 50 % - координатные и 18 % еще декадно – шаговые. Кроме того, большое многообразие типов СЛ отечественных АТС и вполне определенные, характерные для импортного оборудования, протоколы сопряжения систем DECT с внешними сетями (R2, V5.1, V5.2, EDSS-1 и для отдельных систем 2-х проводные АЛ) вызывают необходимость использования конвертеров протоколов.

Правильный выбор комплекса оборудования: конвертер протоколов и система DECT, позволяет оптимизировать показатель цена – качество. Практика развертывания различного рода систем показала, что из большого числа имеющихся на рынке конвертеров протоколов наиболее перспективными являются решения на базе коммутатора «Гранит – К».






Дата публикования: 2014-10-14; Прочитано: 1760 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...