![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Широкое применение тиристоров при регулировании напряжения объясняется следующими их преимуществами по сравнению с рассмотренными ранее схемами:
• большая экономичность вследствие малого падения напряжения в проводящем состоянии (около 2 В);
• высокая скорость регулирования, позволяющая обеспечить стабилизацию выпрямленного напряжения и осуществить защиту выпрямителя от перегрузок и коротких замыканий;
• меньшая необходимая мощность управления;
• меньшие габаритные размеры и масса.
Управляемые вентили — тиристоры — могут находиться в двух крайних состояниях (рис. 122, а): открытом (участок ВС) и закрытом (участок 0А). Момент включения тиристора можно регулировать, подавая управляющий импульс тока на р-п -переход, прилегающий к катоду (рис. 122, б). Ток нагрузки, проходя через от крытый тиристор, смещает все три
Рис. 122. Вольтамперная характеристика тиристора (а), его структура, (б) и условное графическое обозначение (в): Iу — ток управления; А — анод; К — катод: УЭ — управляющий электрод/
Рис. 123. Структурная схема управляемого выпрямителя (и), принципиальная схема простейшего РВБ (б) и диаграммы напряжений на его входе и выходе (в)
eго р-п -перехода в прямом направлении, и управляющий электрод (УЭ) теряет влияние на процессы, происходящие в тиристоре. При падении прямого тока до нуля после рассасывания заряда неосновных носителей в базовых областях тиристор запирается и его управляющие свойства восстанавливаются. Условное графическое обозначение тиристора приведено на рис. 122, в.
На рис. 123,а приведена структурная схема управляемого выпрямителя на управляемых вентилях.
Принципиальным отличием схемы управляемого выпрямителя (УВ) от неуправляемого является наличие в ней регулируемого вентильного блока (РВБ) и устройства управления (УУ), регулирующего напряжение сети. Простейшая схема РВБ на одном тиристоре VS приведена на рис. 123, б. Следует напомнить, что для включения тиристора необходимо выполнение следующих условий: напряжение на его аноде должно быть положительным, но меньше U ПР.ВКЛ., а к управляющему электроду (УЭ) должно быть приложено положительное напряжение, соответствующее отпирающему току. Первое условие выполняется для положительных полуволн напряжения U 2, а для выполнения второго условия к управляющему электроду тиристора подводится отпирающий (управляющий) положительный импульс напряжения Uy.
В момент прихода управляющего импульса, соответствующего углу отпирания а, тиристор теряет управляющие свойства, поэтому, когда напряжение на аноде станет равным нулю, произойдет его выключение. Форма напряжения на резистивной нагрузке R Hбез фильтра показана на рис. 123, в. Момент включения тиристора
можно регулировать в пределах положительной полуволны выходного напряжения U2 трансформатора, т.е. в диапазоне 0 ≤α≤π. При этом если тиристор включается при α = 0, то среднее выпрямленное напряжение нагрузки U Н.С.В.=0. Такой способ управления тиристором называется фазоимпульсным.
В рассмотренной схеме управляемого выпрямителя пульсации напряжения нагрузки довольно большие, поэтому для их уменьшения необходимо включить сглаживающий фильтр. Следует отметить, что в тиристорных управляемых выпрямителях используют фильтры, начинающиеся с дросселя, так как при подключении сразу емкостного фильтра заряд конденсатора через открывшийся тиристор может сопровождаться большим током, который может вывести тиристор из строя.
Рассмотрим работу схемы двухфазного управляемого выпрямителя (рис.124, а) с индуктивно-емкостным фильтром. В этой схеме возможны два режима работы: без блокировочного диода (VD) и с блокировочным диодом. Различие этих режимов заключается в способе выключения тиристоров.
Рис. 124. Схема двухфазного управляемого выпрямителя (а), временные диаграммы напряжений на входе и выходе (б) и регулировочные кривые (в): 1 — без диода VD; 2 — при наличии диода VD.
Работа выпрямителя без блокировочного диода происходит следующим образом. С поступлением управляющего импульса тиристор VS1 включается с углом отпирания α. На выход выпрямителя передается напряжение первой фазы вторичной обмотки U' 2. При t ≥ п напряжение U'2 изменяет полярность на отрицательную, но тиристор VS1 не закрывается, так как через него проходит ток дросселя фильтра L ф, и напряжение самоиндукции обеспечивает его открытое состояние.
При t = α + п включается тиристор VS2, который передает на выход напряжение U"2 второй фазы вторичной обмотки, В этом случае ток дросселя фильтра L фпереключается на вторую фазу, а тиристор VS1 закрывается. Напряжения на выходе выпрямителя Uo и нагрузке U H показано на рис. 124, б (заштрихованные области).
При достаточно большом значении L ф = RH/ωугол включения тиристоров можно регулировать от нуля до π/2, как показано на рис. 124, в (кривая 1при L =∞).
Напряжение нагрузки растет с уменьшением угла α и уменьшается при его увеличении.
При работе выпрямителя с блокировочным диодом VD тиристоры VS 1и VS 2выключаются, когда напряжение на его аноде становится равным нулю. При этом протекание тока в дросселе фильтра не прерывается из-за включения диода VD.
В результате часть периода от πдо π+ α ток в дросселе (а значит, и в нагрузке) проходит через диод VD, и напряжение на выходе выпрямителя не изменяет полярности, как показано на рис. 124, б.
Угол α отпирания тиристора в схеме с диодом VD можно регулировать от нуля до π, как показано на рис. 124, в (кривая 2 при L = 0).
При одинаковом угле отпирания тиристоров в схеме без блокировочного диода напряжение на нагрузке меньше, чем в схеме с блокировочным диодом, так как в течение части периода повторения входного напряжения на его выход передается отрицательное напряжение.
Мостовой управляемый выпрямитель. Мостовой выпрямитель можно построить с меньшим (чем четыре) числом тиристоров, так как для обеспечения управления достаточно включить в каждую из двух последовательных цепей, состоящих из двух диодов, один диод управляемый, а другой — неуправляемый (рис. 125, а), Применение двух управляемых диодов вместо четырех (см. рис. 124) позволяет упростить схему управления и удешевить стоимость вентильной группы.
Рассмотрим работу схемы мостового выпрямителя, в которой одновременно работают тиристор VS1 и вентиль VD2 или тиристор VS2 и вентиль VD 1. Временные диаграммы напряжений и то-
Рис. 125. Мостовая схема управляемого выпрямителя (а) и временные диаграммы напряжений и токов в этой схеме (б)
ков при работе такой схемы на индуктивную нагрузку показаны на рис. 125, 6.
В момент времени t 1на управляющий электрод тиристора VS 1подается импульс управления, открывающий его. В интервале времени от t 1 до t 2ток протекает через тиристор VS 1и вентиль VD,. и напряжение на выходе выпрямителя повторяет входное напряжение U 2. В момент времени t 3 напряжение U 2изменяет свою полярность, и вентиль VD 2запирается, а вентиль VD 1открывается. Переключения тиристоров в этот момент времени произойти не может, так как на управляющий электрод тиристора VS2 не поступает импульс управления. В итоге в течение периода времени от t 2до t 3 открыты тиристор VS 1и вентиль VD2 и через них протекает ток нагрузки I0.
Выпрямленное напряжение U0 в этом интервале времени равно нулю (так как выход выпрямителя закорочен), а ток нагрузки поддерживается за счет энергии, запасенной в дросселе L. В момент времени t 3за счет управляющего импульса открывается тиристор VS2, а тиристор VS 1 запирается, так как на него при этом подается обратное напряжение.
В интервале времени от t 3до t 4ток проводят и тиристор VS 2, и вентиль VD 1, а напряжение на выходе выпрямителя U 0 аналогично входному напряжению U 2, но с противоположным знаком,
В момент времени U вновь происходит коммутация тока в группе неуправляемых вентилей: запирается вентиль VD1 и открывается вентиль VD2.
В интервале времени от t4 до t5 тиристор VS2 и вентиль VD1 открыты, напряжение на выходе выпрямителя U0 = 0, а ток нагрузки Iо поддерживается неизменным за счет энергии, запасенной в дросселе. В интервале времени от t5 до t6 процессы идентичны процессам в интервале от t1 до t2.
Как видно из рис. 125, б, временная диаграмма выпрямленного напряжения U0 в этой схеме такая же, как и в схеме выпрямителя с активной нагрузкой.
УСТРОЙСТВА ЗАЩИТЫ ОТ ПЕРЕГРУЗОК
Вторичные источники питания часто снабжают устройствами электронной защиты (УЗ) от перегрузоки короткого замыкания. Такие устройства включают в себя следующие элементы: датчик контролируемой величины (тока, напряжения или температуры); пороговое устройство (ПУ) или схему сравнения; исполнительное устройство (ИУ). Чаще всего требуется защита источников питания от перегрузки. В этом случае, когда значение тока превысит допустимое, включается пороговое устройство и приводит исполнительный механизм в состояние отключения нагрузки.
Устройства зашиты выполняются с автоматическим повторным включением питании после некоторого времени или с ограничением мощности, отдаваемой нагрузке.
![]() |
Схема устройства защиты от перегрузок по току (и потребляемой мощности) показана на рис. 126. Устройство работает следующим образом. Напряжение с вторичной обмотки трансформатора тока ТА, используемого в качестве преобразователя тока, выпрямляется диодом VD1 и сглаживается фильтром R 7, С1. Переменный резистор R1 используется для регулировки порога срабатывания. В качестве порогового устройства используется логический элемент DD1.1, выполненный по КМОП-технологии. Уровни срабатывания таких элементов стабильны и близки к половине напряжения питания микросхемы. При повышенном токе нагрузки после срабатывания элемента DDL ] запускается ждущий мультивибратор на основе логических элементов DD1.2 и DD1.3 (одно-вибратор), который формирует отрицательное выходное напряжение, отключающее (или запирающее) цепь питания нагрузки. Через некоторое время, определяемое временем разряда конденсатора С2 через резистор R3, одновибратор переключается в исходное (ждущее) состояние с формированием на выходе скачка положительного напряжения. Это напряжение соответствует сигналу включения питания нагрузки или восстановлению нормального рабочего состояния источника питания.
Рис. 126. Электрическая схема устройства защиты от перегрузок по току с автоматическим восстановлением рабочего состояния источника питания
Аналогично работают устройства защиты от повышения напряжения и температуры, т.е. при скачке температуры или напряжения соответствующий сигнал подается на логический элемент DD1.1, который запускает одновибратор, отключающий питание на определенное время.
В заключение необходимо отметить, что выбор схемы вторичного источника питания и параметров
ее элементов определяется уровнем требований к коэффициенту стабилизации напряжения и мощностью, необходимой для питания электронной аппаратуры. Для очень мощной аппаратуры (1... 100 кВт — звуковая аппаратура концертных залов, радиостанции и т. п.), а также на транспортных средствах с управляемым приводом требования к стабильности напряжения ниже. В них используются мощные выпрямительные установки для трехфазного напряжения с использованием тиристоров.
Дата публикования: 2014-10-23; Прочитано: 11915 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!