Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Итак, приступив к изучению проблемы развития динамической выносливости мышц, выполняющих подъём/опускание туловища, мы последовательно рассмотрели её под различными углами зрения. Сначала вопрос развития динамики был исследован с точки зрения структурных изменений в мышечных волокнах, происходящих под воздействием различных тренировочных нагрузок. Затем мы проследили за энергообеспечением динамической работы при выполнении подтягиваний в различном темпе. Влияние процессов, происходящих внутри мышц, на технику и тактику выполнения соревновательного подхода было исследовано в предыдущем разделе. Попробуем теперь рассмотреть проблему развития динамической выносливости мышц, участвующих в подтягивании, на теоретическом уровне.
В параграфе 2.7 была получена формула, связывающая результат в подтягивании со скоростью расходования резерва силовых способностей. Нужно сказать, что эта формула описывает процессы, происходящие в любом циклическом упражнении, но результаты её анализа мы будем использовать только применительно к подтягиванию на перекладине. Перепишем формулу, наполнив её конкретным содержанием и введя новые величины.
(7.1)
где: N – количество подтягиваний, раз;
- максимальная произвольная сила спортсмена в конце фазы подъёма (подбородок на уровне грифа), Кг;
- собственный вес тела спортсмена, Кг;
- величина снижения силовых способностей в фазах подъёма/опускания туловища, Кг;
- величина восстановления силовых способностей спортсмена в висе в ИП, Кг;
R = - резерв силы, равный разнице между максимальной произвольной силой и весом тела спортсмена, Кг;
ΔF = величина снижения резерва силы в расчёте на один цикл подтягиваний, Кг.
В результате усилий, затраченных спортсменом на подъём и опускание туловища, его резерв силы снижается за счёт того, что силовые способности уменьшаются на величину ΔFраб. В паузе отдыха происходит восстановление силовых способностей на величину ΔFотд. Таким образом, в каждом цикле подтягиваний силовые способности спортсмена снижаются на определённую величину ΔF= ΔFраб - ΔFотд. Для упрощения анализа формулы будем считать, что когда через некоторое количество циклов подтягиваний N силовой потенциал спортсмена снизится от начального (максимального) значения до порогового значения , подтягивание прекращается.
Формула 7.1 устанавливает тот факт, что в конечном итоге количество циклов подтягиваний, в течение которых силовой потенциал спортсмена снизится от максимальной до пороговой величины, определяется величиной расходования резерва силы в расчёте на один цикл подтягиваний.
В соответствии с формулой (7.1) количество подтягиваний растёт прямо пропорционально максимальной произвольной силе спортсмена , а значит, и резерву силы R (при условии постоянства собственного веса спортсмена). Но возникает вопрос: является ли путь непрерывного роста резерва силы оптимальным для улучшения результата подтягивании? С одной стороны, у человека, который не может подтянуться ни одного раза, резерв силы отсутствует, а у квалифицированных полиатлонистов он составляет (в верхней части траектории) как минимум 30% от собственного веса. Но с другой стороны, у спортсменов, имеющих одинаково высокие результаты в подтягивании (рисунок 7.8 кривые 2 и 6), величина резерва силы может существенно отличаться. Поэтому, видимо, рост величины резерва силы важен лишь для начинающих, а у квалифицированных спортсменов его величина не имеет решающего значения и зависит от преимущественной направленности используемых тренировочных упражнений.
Нельзя также исключать и вероятность того, что рост максимальной силы мышц спортсмена , происходящий за счёт гипертрофии быстрых мышечных волокон, в большинстве случаев будет сопровождаться ростом величины (эти величины стоят в числителе и знаменателе формулы и будут действовать на результат противоположно друг другу), поскольку развитие максимальной силы связано с изменением «метаболического профиля» мышцы и увеличением доли быстрых мышечных волокон, использующих анаэробые (наиболее мощные) механизмы энергопродукции. В связи с этим можно ожидать, что параллельно с ростом резерва силы будет увеличиваться и скорость его снижения
Другое дело, если рост максимальной силы будет происходить за счёт силы медленных мышечных волокон, использующих аэробный механизм энергообеспечения. В этом случае рост величины , стоящей в числителе формулы, будет сопровождаться ростом стоящей в знаменателе величины , уменьшая величину знаменателя и приводя к росту спортивного результата. Таким образом, теоретически гипертрофия медленных мышечных волокон (с последующим увеличением их окислительного потенциала) является более предпочтительным вариантом, поскольку одновременно ведёт к увеличению как резерва силы R, так и к уменьшению величины снижения резерва силы в расчёте на один цикл подтягиваний .
Формула (7.1) позволяет также предложить наиболее простой способ тренировки для начинающих спортсменов, которые не могут выполнить ни одного подтягивания. Дело в том, что из четырёх величин, стоящих в числителе и знаменателе формулы, только является характеристикой нагрузки, а значит, не зависит от имеющихся энергетических возможностей мышц и может задаваться произвольным образом. Уменьшение величины (путём подбора соответствующей степени облегчения) даёт возможность начинающему спортсмену на первой же тренировке выполнять в подходе любое заданное количество подтягиваний.
Теперь обратим своё внимание на знаменатель формулы (7.1). Чтобы увеличить количество подтягиваний, нужно стремиться к уменьшению и увеличению . Величина характеризует степень снижения резерва силы в фазах подъёма/опускания, а величина - степень его восстановления во время отдыха в фазе виса в ИП. Чем меньше энергозатраты в фазах подъёма/опускания туловища и чем быстрее и эффективнее идут процессы ресинтеза АТФ в паузе отдыха, тем лучше должен быть спортивный результат.
Независимо от величины максимальной силы (минимально допустимый уровень которой должен превышать вес спортсмена) характер проявления силы в фазе подъёма туловища должен быть таким, чтобы обеспечить минимальные энергозатраты. Разгон тела и его движение в фазе подъёма туловища производятся за счёт мышечных усилий, поэтому скорость движения тела спортсмена в фазе подъёма, особенно на участке разгона, оказывает значительное влияние на результат в подтягивании (более подробно этот вопрос рассматривался в п. 1.2.1.3). Кроме того, при увеличении скорости подъёма изменяется режим энергообеспечения, поскольку увеличивается доля включения в работу быстрых мышечных волокон.
Но с другой стороны, уменьшение скорости подъёма (увеличение длительности фазы подъёма) сопровождается увеличением длительности статического напряжения мышц, выполняющих подъём туловища. Статическое напряжение при «скользящем» висе на согнутых руках также сопровождается повышенным расходом метаболической энергии, и хотя с физической точки зрения при статическом напряжении мышц механическая работа не производится, физиологическая стоимость такого напряжения пропорциональна времени поддержания статических усилий.
Таким образом, как неоправданное увеличение скорости подъёма (сопровождающееся «вылетом» над перекладиной), так и чрезмерное её снижение связано с повышенным расходом энергии. И в обоих случаях происходит возрастание величины в формуле (7.1), что ведёт к падению спортивного результата.
Нужно отметить, что величина изменяется в ходе выполнения подтягиваний, начиная увеличиваться после того, как все имеющиеся в наличие мышечные волокна будут подключены к работе. Поэтому, чем больше резерв мышечных волокон, тем позже наступит этот момент. Видимо, смысл увеличения максимальной силы мышечных волокон как раз и состоит в том, чтобы как можно дольше не допустить увеличения , т.е. отдалить момент «зависания» в верхней части траектории движения.
Теперь поговорим о величине . Ресинтез АТФ может идти как анаэробным, так и аэробным способом. В начале подтягиваний, пока концентрация креатинфосфата в мышечных волокнах ещё существенно не снизилась, восстановление запасов АТФ происходит преимущественно за счёт быстрой креатинкиназной реакции.
Чем выше исходная концентрация креатинфосфата, тем дольше будет продолжаться период работы за счёт креатинфосфатного источника и тем большее количество подтягиваний успеет сделать спортсмен до тех пор, пока уровень креатинфосфата снизится до такой величины, когда начнёт ощущаться дефицит АТФ, вследствие чего спортсмен будет вынужден снижать темп выполнения подтягиваний, сначала затягивая паузу отдыха, а затем и переходя на два цикла дыхания на один цикл подтягиваний.
Если аэробные возможности мышц развиты в достаточной степени и отсутствуют препятствия по доставке кислорода, спортсмен будет способен достаточно долго выполнять подтягивания в таком режиме и в условиях минимального закисления мышц (не препятствующего их работе в выбранном темпе).
В противном случае будет наблюдаться увеличение затрат в фазе подъёма/опускания туловища (т.е. увеличение ) и снижение степени восстановления в фазе отдыха в ИП (т.е. снижение ), что на фоне непрерывного уменьшения резерва силы приводит к лавинообразному нарастанию утомления и отказу от продолжения работы.
Таким образом, для минимизации вклада анаэробного гликолиза в энергообеспечение мышечной деятельности, нам желательно иметь изначально высокую концентрацию креатинфосфата в мышечных волокнах и высокую аэробную производительность рабочих мышц.
Дата публикования: 2014-10-20; Прочитано: 1446 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!