Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Нарушения сгорания



Детонационное сгорание в цилиндре дви­гателя представляет собой сгорание последних частей заряда в результате его объемного самовоспламенения. Оно сопровождает­ся возникновением ударных волн, скорость которых может в де­сятки раз превышать скорость распространения фронта турбулен­тного пламени и достигать 1500 м/с.

В процессе сгорания часть рабочей смеси, до которой фронт пламени доходит в последнюю очередь, в результате увеличения давления от сгорания нагревается до температуры, превышаю­щей температуру самовоспламенения. В ней могут возникать очаги воспламенения. При достаточном времени в камере сгорания воз­можно образование и распространение ударных волн, которые также способствуют самовоспламенению рабочей смеси.

На индикаторных диаграммах детонация проявляется в виде пиковых колебаний давления (рис. 4.2, а, б). Внешним признаком детонационного сгорания является звонкий металлический стук, возникающий вследствие отражения ударных волн от стенок ка­меры сгорания. С увеличением детонации стуки становятся гром­че, мощность двигателя падает, а в отработавших газах наблюда­ется черный дым. При детонации растут тепловые и механические нагрузки на детали КШМ, а в результате продолжительной дето­нации оплавляются кромки поршней, обгорают прокладки головок цилиндров и электроды све­чи, разрушаются подшипники коленчатого вала.

Рис. 4.2. Виды индикаторных диаг­рамм при нарушениях процесса сго­рания в двигателе с искровым зажи­ганием: а — слабая детонация; б — сильная де­тонация; в — преждевременное воспла­менение

Мероприятия по подавлению детонации:

• использование топлив с окта­новым числом, соответствующим требованиям завода-изготовите­ля. У легких фракций бензина октановое число меньше, чем у средних и тяжелых. При быст­ром открытии дроссельной зас­лонки тяжелые фракции бензи­на поступают в цилиндр с не­которым опозданием, поэтому в начале разгона из-за времен­ного снижения октанового чис­ла топлива возможно появление детонации;

• уменьшение угла опережения зажигания для снижения макси­мального давления и скорости нарастания давления цикла;

• увеличение частоты вращения приводит к интенсификации про­цесса сгорания за счет повышения скорости распространения фронта пламени. При этом также растет концентрация отработав­ших газов в рабочей смеси, что снижает вероятность возникнове­ния детонации;

• уменьшение нагрузки двигателя прикрытием дроссельной зас­лонки приводит к снижению давления и температуры процесса сгорания и увеличению доли отработавших газов в рабочей смеси;

• конструктивные мероприятия по снижению вероятности появ­ления детонации сводятся к усилению турбулизации заряда, улуч­шению охлаждения последних порций заряда, уменьшению пути, проходимого фронтом пламени от свечи до наиболее удаленных частей камеры сгорания, уменьшению диаметра цилиндра, сни­жению степени сжатия.

Преждевременное воспламенение возникает во время процесса сжатия (до момента появления искры) от накаленных (выше 700...800 °С) зон центрального электрода свечи, головки выпуск­ного клапана, тлеющих частиц нагара. При этом возрастают тем­пература и давление цикла, происходит перегрев двигателя и уменьшение его мощности (рис. 4.2, в). Длительная работа в таком режиме может привести к прогоранию поршня. Для устранения преждевременного воспламенения необходимо быстро закрыть дроссельную заслонку. В эксплуатации следует использовать свечи с требуемым высоким калильным числом.

Воспламенение от сжатия при выключенном зажигании возни­кает в двигателе с ε > 8,5, когда в конце сжатия при невысокой частоте вращения (n = 300...400 мин-1) температура рабочей сме­си достаточна для ее самовоспламенения. Для остановки двигате­ля в этом случае необходимо одновременно с выключением за­жигания прекращать подачу топлива.

4. Влияние различных факторов на процесс сгорания.

Угол опере­жения зажигания φо.з. на каждом режиме должен обеспечивать наи­лучшие показатели двигателя. Такой угол называется оптималь­ным φо.з. опт. При этом основная фаза процесса сгорания θII распо­лагается одинаково по обе стороны от ВМТ. Система зажигания обеспечивает автоматическое изменение фаз в зависимости от ре­жима его работы и температурного состояния.

Угол опережения зажигания φо.з. зависит от длительности фаз процесса сгорания. Чем больше θI, тем раньше необходимо поджигать смесь. Однако при увеличении φо.з. ухудшаются на­чальные условия воспламенения рабочей смеси из-за уменьше­ния ее температуры и давления, что в итоге приводит к возра­станию θI

Состав смеси влияет на количество теплоты и скорость ее вы­деления при сгорании топлива, а также на токсичность отрабо­тавших газов. Минимальные значения и θI и θI I, максимальные рz и pi и наибольшее тепловыделение достигаются при мощностном составе смеси αм = 0,85...0,95.

В цилиндре выделяется наибольшее количество теплоты при достаточно высокой скорости сгорания топлива. Обеднение смеси до αэк = 1,1...1,3 увеличивает индика­торный КПД ηi и повышает экономичность. При дальнейшем обед­нении смеси резко ухудшаются процессы воспламенения и сгора­ния, растет неравномерность последовательных циклов, что при­водит к снижению ηi.

Для газовых топлив характерны более широкие пределы вос­пламеняемости. Это позволяет эффективно сжигать сильно обед­ненные смеси. Например, для водорода рi mах достигается при α ≈ 1,0, а ηi mах при α ≈ 2,5.

Изменение α для каждого режима работы ДВС обеспечивается автоматически системой топливоподачи для получения максималь­ных рi или ηi и требуемой токсичности отработавших газов.

Нагрузка в двигателе с искровым зажиганием уменьшается пу­тем прикрытия дроссельной заслонки. При этом снижается коли­чество свежего заряда и растет доля остаточных газов. В результате ухудшаются условия воспламенения и растет продолжительность θI. По мере прикрытия заслонки повышается неравномерность по­следовательных циклов, что требует обогащения смеси для улуч­шения ее воспламенения искрой. Ухудшение условий сгорания при этом вызывает дополнительный расход топлива и рост токсичных компонентов СО и СН в отработавших газах.

Увеличение частоты вращения вызывает рост турбулизации за­ряда и улучшает смесеобразование. Так как при этом θII ≈ соnst, а θI возрастает, то для обеспечения тепловыделения у ВМТ необхо­димо увеличить φо.з..

Форма камеры сгорания должна обеспечить интенсивное управ­ляемое сгорание при минимальных тепловых потерях. Турбулизацию в цилиндре и в зонах, до которых фронт пламени от свечи доходит в последнюю очередь, обеспечивают вытеснители. Они представляют собой зазоры между поверхностью головки цилиндров и днищем поршня и способствуют ускоренному догоранию смеси.

Свечу в камере сгорания располагают ближе к центру, чтобы обеспечить хорошую очистку зоны ее электродов от отработавших газов и сократить путь пламени до наиболее удаленных точек ка­меры сгорания.

При центральном расположении свечи в камере сгорания хо­рошо компонуются четыре клапана. Это позволяет получить высо­кое значение ηV при большой частоте вращения.

Степень сжатия увеличивают для получения большего давле­ния и температуры рабочей смеси в момент искрового разряда и улучшения условий воспламенения смеси, повышения скорости сгорания в основной фазе, снижения η. Однако при повышении степени сжатия увеличивается отношение поверхности камеры сго­рания к ее объему и возрастает вероятность детонации.

Расслоение смеси повышает эффективность процесса сгорания в том случае, если в зоне свечи зажигания образуется обогащен­ная смесь, а по мере удаления от нее — обедненная.





Дата публикования: 2014-10-19; Прочитано: 1610 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...