Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Подлинную революцию в вычислительной технике произвело создание микропроцессора. В 1971 г. компанией Intel (США) было создано устройство, реализующее на одной крошечной микросхеме (рис. 4.7) функции процессора – центрального узла ЭВМ. Последствия этого оказались огромны не только для вычислительной техники, но и для научно-технического прогресса в целом. В области разработки ЭВМ первым таким последствием оказалось создание персональных компьютеров (ПК) – небольших и относительно недорогих ЭВМ, способных аккумулировать и усиливать интеллект своего персонального хозяина (впрочем, заметим, что как и всякое техническое средство, ПК способен и на обратный эффект – напрасно отнимать время и подавлять интеллект).
Небольшие компьютеры, предназначенные для одного пользователя, который в каждый момент решает не более одной задачи, использовались в профессиональной деятельности уже в начале 1970-х гг. 8-разрядные микропроцессоры І8080 и Z80 в сочетании с операционной системой СР/М позволили создать ряд таких компьютеров, но тем не менее началом эры их массового появления стал 1976 г., когда появился знаменитый Apple («Яблоко») – прообраз современного ПК, созданный молодыми американскими инженерами Стивом Возняком и Стивом Джоб-сом (рис. 4.8). За несколько лет было продано около 2 млн экземпляров лишь этих ПК (особенно Арр1е-2), т.е. впервые в мировой практике компьютер стал устройством массового производства. Вскоре лидерство в этой области захватила фирма IBM – компьютерный гигант, представившая в 1981 г. свой персональный компьютер IBM PC (PC – personal computer). Его модели PC XT (1983 г.), PC AT (1984 г.), ПК с микропроцессором Pentium (начало 1990-х гг.; содержит более 3 млн транзисторов!) стали, каждый в свое время, ведущими на мировом рынке ПК. В настоящее время производство ПК ведут десятки фирм (а комплектующие выпускают сотни фирм) по всему миру.
Ближайшим конкурентом компьютеров IBM PC являются ПК фирмы Apple Computer. Пришедшие на смену Аррlе-2 машины Macintosh широко используются в системах образования многих стран.
В дальнейшем, по мере знакомства с архитектурой ЭВМ, рассказ о ПК будет продолжен. Сейчас же уточним характеристики, которые в совокупности позволяют отнести компьютер к группе ПК:
• относительно невысокая стоимость (доступная для приобретения в личное пользование значительной частью населения);
• наличие «дружественных» операционной и интерфейсной систем, которые максимально упрощают пользователю работу с компьютером;
• наличие достаточно развитого и относительно недорогого набора внешних устройств в «настольном» исполнении;
• наличие аппаратных и программных ресурсов общего назначения, позволяющих решать реальные задачи по многим видам профессиональной деятельности.
За треть века, прошедшие с момента создания ПК, уже сменилось несколько их поколений: 8-битные, 16-битные, 32-битные. Многократно усовершенствовались внешние устройства, все операциональное окружение, включая сети, системы связи, системы программирования, программное обеспечение и т.д. Персональный компьютер занял нишу «персонального усилителя интеллекта» множества людей, стал в ряде случаев ядром автоматизированного рабочего места (в цехе, в банке, в билетной кассе, в школьном классе – все перечислить невозможно).
Общая классификация компьютеров. Массовость использования ПК, огромные рекламные усилия производителей и коммерсантов не должны заслонить тот факт, что кроме ПК есть и другие, многократно более мощные, вычислительные системы. Всегда есть круг задач, для которых недостаточно существующих вычислительных мощностей и которые столь важны, что для их решения не жалко никаких средств. Это, например, может быть связано с обороноспособностью государства, решением сложнейших научно-технических задач, созданием и поддержкой гигантских банков данных. В настоящее время лишь немногие государства способны производить, так называемые, суперЭВМ – компьютеры, на фоне которых «персоналки» кажутся игрушками. Впрочем, сегодня ПК часто становится терминалом – конечным звеном в гигантских телекоммуникацион-
ных системах, в которых решением непосильных для ПК задач обработки информации занимаются более мощные ЭВМ.
Схема классификации компьютеров, исходящая из их производительности, размеров и функционального назначения, приведена на рис. 4.9. Следует отметить, что вопрос об отнесении конкретного компьютера к одной из категорий этой схемы может иметь неоднозначный ответ, привязанный к конкретной исторической обстановке или доминирующему поколению ЭВМ.
Место супер-ЭВМ в этой иерархии уже обсуждалось. Определить супер-ЭВМ можно лишь относительно: это самая мощная вычислительная система, существующая в соответствующий исторический период. В настоящее время наиболее известны мощные супер-ЭВМ: Cray и IBM SP2 (США). Модель Сгау-3, выпускаемая с начала 1990-х гг. на основе принципиально новых микроэлектронных технологий, является 16-процессорной машиной с быстродействием более 10 млрд опер/с (по другим данным 16 млрд опер/с) над числами с «плавающей точкой» (т.е. длинными десятичными числами; такие операции гораздо более трудоемки, чем над целыми числами); в модели CS 6400 число процессоров доведено до 64. Супер-ЭВМ требуют особого температурного режима, зачастую водяного охлаждения (или даже охлаждения жидким азотом). Их производство по масштабам несопоставимо с производством компьютеров других классов (так, в 1995 г. корпорацией Cray было выпущено всего около 70 таких компьютеров).
Большие ЭВМ более доступны, чем супер-ЭВМ. Они также требуют специального помещения, иногда весьма немалого, поддержания жесткого температурного режима, высококвалифицированного обслуживания. Такую ЭВМ в 1980-е гг. мог себе позволить завод, даже крупный вуз. Классическим примером служат выпускавшиеся в США машины серии IBM 370 и их отечественные аналоги ЕС ЭВМ. Большие ЭВМ используются для производства сложных научно-технических расчетов, математического моделирования, а также в качестве центральных машин в крупных автоматизированных системах управления. Впрочем, скорость прогресса в развитии вычислительной техники такова, что возможности больших ЭВМ конца 1980-х гг. практически по всем параметрам перекрыты наиболее мощными «супер-мини» середины 1990-х гг. Несмотря на это, выпуск больших машин продолжается, хотя цена одной машины может составлять несколько десятков миллионов долларов.
Мини-ЭВМ появились в начале 1970-х гг. Их традиционное использование – либо для управления технологическими процессами, либо в режиме разделения времени в качестве управляющей машины небольшой локальной сети. Мини-ЭВМ используются, в частности, для управления станками с ЧПУ, другим оборудованием. Среди них выделяются «супер-мини», имеющие характеристики, сравнимые с характеристиками больших машин (например, в 1980-х гг. таковыми считались семейство VAX-11 фирмы DEC и его отечественные аналоги – СМ 1700 и др.).
МикроЭВМ обязаны своим появлением микропроцессорам. Среди них выделяют многопользовательские, оборудованные многими выносными терминалами и работающие в режиме разделения времени; встроенные, которые могут управлять станком, какой-либо подсистемой автомобиля или другого устройства (в том числе и военного назначения), будучи его малой частью. Эти встроенные устройства (их часто называют контроллерами) выполняются в виде небольших плат, не имеющих рядом привычных для пользователя компьютера внешних устройств.
Термин «рабочая станция» используется в нескольких, порой несовпадающих, смыслах. Так, рабочей станцией может быть мощная микроЭВМ, ориентированная на специализированные работы высокого профессионального уровня, которую нельзя отнести к персональным компьютерам хотя бы в силу очень высокой стоимости. Это, например, графические рабочие станции для выполнения работ по автоматизированному проектированию или для высокоуровневой издательской деятельности. Рабочей станцией могут называть и компьютер, выполняющий роль хост-машины в подузле глобальной вычислительной сети. Компьютеры фирм Sun Microsystems, Hewlett-Packard, стоимостью в десятки раз большей, чем персональные компьютеры, являются одно- или многопроцессорными машинами с огромным (по меркам ПК) оперативным запоминающим устройством (ОЗУ), мультипроцессорной версией операционной системы, несколькими CD ROM-накопителями и т.д.
Нельзя, наконец, не сказать несколько слов об устройствах, приносящих большую пользу и также являющихся ЭВМ (поскольку они чаще всего и электронные, и вычислительные), – аналоговых вычислительных машинах (АВМ). Они уже полвека хотя и находятся на обочине развития современной вычислительной техники, но неизменно выживают. Известны системы, в которых АВМ сопрягаются с цифровыми, значительно увеличивая эффективность решения задач в целом. Основное в АВМ – они не цифровые, обрабатывают информацию, представленную не в дискретной, а в непрерывной форме (чаще всего в форме электрических токов). Их главное достоинство – способность к математическому моделированию процессов, описываемых дифференциальными уравнениями (порой очень сложных) в реальном масштабе времени. Недостаток – относительно низкая точность получаемых решений и неуниверсальность.
Что впереди? В 1990-х гг. микроэлектроника подошла к пределу, разрешенному физическими законами. Фантастически высока плотность упаковки компонентов в интегральных схемах и почти предельно велика возможная скорость их работы.
В совершенствовании будущих ЭВМ видны два пути. На физическом уровне это переход к использованию иных физических принципов построения узлов ЭВМ – на основе оптоэлектроники, использующей оптические свойства материалов, на базе которых создаются процессор и оперативная память, и криогенной электроники, использующей сверхпроводящие материалы при очень низких температурах. На уровне совершенствования интеллектуальных способностей машин, отнюдь не всегда определяемых физическими принципами их конструкций, постоянно возникают новые результаты, опирающиеся на принципиально новые подходы к программированию. Уже сегодня ЭВМ выигрывает шахматные партии у чемпиона мира, а ведь совсем недавно это казалось совершенно невозможным. Создание новейших информационных технологий, систем искусственного интеллекта, баз знаний, экспертных систем продолжатся.
Наконец, уже сегодня огромную роль играют сети ЭВМ, позволяющие разделить решение задачи между несколькими компьютерами. В недалеком будущем и сетевые технологии обработки информации станут, по-видимому, доминировать, существенно потеснив персональные компьютеры (точнее говоря, интегрировав их в себя).
В данном подразделе приведены лишь ключевые события, имена и даты в истории развития одного из наиболее замечательных технических средств, созданных человеком. Более подробную информацию можно найти в указанной в конце главы литературе.
Дата публикования: 2014-10-19; Прочитано: 1360 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!