Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Требования к машинам и критерии их качества



В развитии машиностроения очень важны следующие современные направления: увеличение мощности и производительности машины; быстроходность и равномерность хода; повышение коэффициента полезного действия; автоматизация рабочих циклов машин; точность работы машины; стандартизация и взаимозаменяемость деталей и узлов; удобство и безопасность обслуживания; компактность; эстетичность внешнего вида машины. Детали и узлы машин должны быть работоспособными, надежными, технологичными, экономичными и эстетичными.

Примеры реализации этих направлений в машиностроении.

1. Мощность одного электрогенератора Волховской электростанции, построенной в 1927 г., составляет 8000 кВт, Красноярской (1967 г.) — 508 000 кВт, т. е. увеличение мощности в 63 раза.

2. Сравните скорость самолетов сороковых годов со скоростью совре­менного сверхзвукового лайнера.

3. На железнодорожном транспорте паровозы, имевшие низкий КПД, заменены тепловозами и электровозами, КПД которых во много раз выше.

4. Комплексная автоматизация становится основой организации всех отраслей народного хозяйства. Созданы заводы-автоматы по изготовлению подшипников качения; контроль технологических процессов и управление производством механизируются и автоматизируются.

Поскольку человеку свойственно хотеть всего и сразу, то требования к машинам многообразны и часто противоречивы, однако их можно условно разделить на основные взаимосвязанные группы:

- технологические требования;

- экономические требования;

- эксплуатационные требования.

Качество машины, т.е. её максимальное соответствие всем требованиям невозможно без неустанного внимания инженера на всех стадиях "жизни" машины.

Качество закладывается на стадии проектирования, обеспечивается на стадии производства и поддерживается в процессе эксплуатации.

Несмотря на большое многообразие современных машин, отли­чающихся друг от друга назначением, производительностью, скоростью движения рабочих органов и т.д., установлены общие требования, предъявляемые к конструкции самих машин, а также к их сборочным единицам и деталям. Такими требованиями к машинам являются:

- соответствие производительности заданным объемам и темпам выполнения работы;

- обеспечение высокой надежности и долговечности, а также срока службы машины, соответствующего сроку гарантии в заданных условиях эксплуатации;

- правильность выбора материала и рациональных способов обработки;

- соответствие конструкции машины ее назначению;

- обеспечение наименьших габаритных размеров машины, затрат труда и материально-денежных средств;

- удобство доставки к потреблению;

- привлекательность формы и отделки внешнего вида машины.

К конструкциям сборочных единиц предъявляются требования легкой сборки и разборки, легкой замены относительно быстро изнаши­вающихся частей и т. д.

Детали должны иметь минимальную массу при достаточной проч­ности и быть надежными в эксплуатации, так как их поломка может привести к авариям в машине. Прочность детали обеспечивается выбором материала и правильно рассчитанными размерами. Уменьшение массы деталей достигается применением более прочных и экономичных материалов. Применение наиболее точных методов расчета дает возможность получить размеры деталей без излишних запасов прочности. Многие детали должны также обладать достаточной жесткостью, т.е. способностью сопротивляться образованию остаточных деформаций. Особое значение это имеет для таких деталей, как корпуса, валы, оси, опоры. Жесткость деталей зависит от свойств материала, размеров и формы деталей, поэтому при конструкции многие детали машин подвергаются расчетам на жесткость и специальным испытаниям опытных образцов.

Деталям должна быть придана достаточная износостойкость. Это требование выполняется применением специальных материалов и различ­ными способами поверхностного упрочнения.

Детали должны быть как можно более простыми по форме и экономичными в изготовлении. Это требование может быть выполнено при условии тесного содружества конструкторов и технологов, обеспечивающего применение наиболее рациональных конструкций, прогрессивной технологии, более дешевых материалов и т.д.

Одним из существенных критериев оценки конструкций изделия является его технологичность и экономичность.

ТЕХНОЛОГИЧНОСТЬ – изготовление изделия при минимальных затратах труда, времени и средств при полном соответствии своему назначению.

Условно различают технологичность изготовления и эксплуатацион­ную технологичность. К последней относят ремонтопригодность, восста­навливаемость, приспособленность к человеку, в том числе удобство и безопасность обслуживания и требуемый уровень подготовки обслужи­вающего персонала, дефицитность и нормы расходования эксплуата­ционных материалов; степень воздействия объекта на окружающую среду; возможности консервации, хранения, транспортирования и др.

Технологичность (изготовления) условно разделяют на технологич­ность детали и технологичность соединения или сборочной единицы, «условно», потому как оба эти вида находятся в неразрывной связи. Общий подход к выбору конструктивных решений, исходя из данного условия, независимо от функции, технологии и материалов — это простота геометрической формы, плавные переходы от одного элемента конструкции к другому и унификация (повторяемость) элементов, деталей, сборочных единиц и агрегатов.

Технологичной называется конструкция машины, которая обеспечивает заданные эксплуатационные качества и позволяет при данной серийности изготовлять ее с наименьшими затратами труда и материалов. Технологичность конструкции тесно связана с серийностью, обеспечивающей ее соответствие масштабу выпуска и условиям производства. В значительной степени технологичность конструкции обеспечивается широким внедрением стандартизации, нормализации и унификации, использованием полуфабрикатов и рекомендуемых материалов, а также типизацией технологических процессов. Основные условия обеспечения технологичности связаны со способами получения заготовки, механической обработки и с точностью изготовления деталей и сборки.

Литые детали должны обеспечивать легкость формовки, сочетание толщин стенок, плавные закругления, литейные уклоны, правильное расположение ребер, удобство для базирования и механической обработки. Детали, получаемые ковкой, штамповкой, прокаткой, не должны иметь острых внутренних углов, резких перепадов толщин стенок, обеспечивать хорошее «растекание» металла в штампе и уклоны, обеспечивающие удаление детали из штампа.

Методом литья получают детали практически неограниченной сложности, а посредством штамповки изготовляют детали сравнительно простой конфигурации, но с применением сварки из штампованных элементов выполняют изделия весьма сложной формы.

Зубья, резьбу и другие подобные элементы лучше получать накатыванием, а не нарезанием.

Соответствие технологического процесса принятому материалу обеспе­чивает возможность получения заданных свойств материала.

Рациональная последовательность технологических процессов и операций обусловлена как конструкцией и материалом изделия, так и выбран­ными способами изготовления. Целесообразно предусмотреть геометри­ческую форму, для воспроизведения которой необходимо минимальное количество, минимальное разнообразие процессов и операций, и не желателен возврат к предшествующим видам обработки. Следует, например, помнить, что термическая или химико-термическая обра­ботка, нанесение на поверхности покрытий, как правило, приводят к снижению точности детали и требуют дополнительной обработки — шлифования, доводки и т. п.

Еще одно направление обеспечения технологичности сопряжено с появлением новых материалов, обладающих уникальными свойствами, речь идет о некоторых видах пластмасс и композиционных материалов.

Наиболее актуальным вопросом современного конструирования является обеспечение технологичности сборочной единицы. Сборку автоматизировать труднее всего, поэтому стоимость ручных сборочных операций занимает все большую часть из общей стоимости изделия. Не случайно промышленные компании стремятся разместить сборочные предприятия в районах с наиболее дешевой рабочей силой. В этой связи на всех этапах конструирования процесс сборки должен продумываться самым тщательным образом.

Основные приемы обеспечения рациональной сборки — это блочность конструкции и простота траектории относительного движения и относительного ориентирования в процессе соединения деталей или сборочных единиц.

Таким образом, под технологичностью конструкций и их деталей подразумевается придание им соответствующих конструктивных форм и применение для их изготовления таких материалов и приемов, которые обеспечивают наименьшие в требуемых пределах массу и размеры конструкции, минимальный расход материалов, наибольшую простоту и экономичность производства.

ЭКОНОМИЧНОСТЬ – минимальная стоимость производства и эксплуатации. Экономичность деталей и узлов достигается оптимизацией их формы и размеров из условия минимума материалоемкости, энергоемкости и трудоемкости производства, за счет максимального коэффициента полезного действия в эксплуатации при высокой надежности; высокой специализацией производства и т. д. При оценке экономичности учитывают затраты на проектирование, изготовление, эксплуатацию и ремонт.

Технико-экономические расчеты наряду с техническими величинами учитывают также и экономические категории — затраты материалов, энергии, труда и других средств. Особый интерес представляет выполнение таких расчетов на первых этапах конструирова­ния, особенностью которых является многовариантность. Сущность технико-экономического подхода при конструировании заключается в поисках наиболее рациональной конструкции машины с учетом совокупности всех особенностей производства и эксплуатации. Экономический эффект возрастает пропорционально увеличению долговечности машины, а также за счет снижения стоимости затрат рабочей силы при эксплуатации и повышения производительности машины.

Экономическое обоснование выбора варианта конструкции связано с оценкой материалоемкости, трудоемкости и себестоимости изготов­ления машины. При оценке различных вариантов конструкции исполь­зуют удельные показатели, представляющие собой отношение массы изделия к наиболее характерному для него параметру (мощности, вращающему моменту, производительности, грузоподъемности).

ОБЩАЯ ТРУДОЕМКОСТЬ - нормированная сумма затрат труда (в единицах времени) на изготовление деталей, сборочных единиц и машины в целом — в наибольшей степени определяет себестоимость проектируемого изделия.

Расчет себестоимости машины по стоимости единицы массы основан на принципе подобия. Однако чаще и более строго принцип подобия выдерживается не для машины в целом, а для отдельных агрегатов и деталей. В себестоимости современных машин большую часть состав­ляют комплектующие изделия. Экономический эффект унификации выражается в сокращении количества технической документации и технической оснастки.

Выбирая материал для деталей конструируемой машины наряду с другими соображениями следует учитывать трудности, вызываемые большой номенклатурой используемых материалов и по возможности сокращать ее, учитывая, что на себестоимость детали оказывает способ ее изготовления. Сравнительный анализ показывает, что детали простой формы из проката дороже деталей из ст.3 в 2–5 раз, литые и кованые — в 5–10 раз; обработка на строгальных и долбежных станках дороже токарной в 2–5 раз, а на револьверных и автоматических станках дешевле в 2–10 раз.

Таким образом, экономические аспекты в процессе конструирования проявляются при выборе материала, термообработки, упрочняющей технологии, способа изготовления.

НАДЁЖНОСТЬ – свойство объекта сохранять во времени способность к выполнению заданных функций (ГОСТ 27.002-83).

Эстетичность - совершенство и красота внешних форм деталей, узлов и машин существенно влияют на отношение к ней со стороны обслуживающего персонала. Оформление узлов и деталей, определяющих внешние очертания машины, должно быть красивым и отвечать требованиям художественного конструирования (дизайн). Формы наружных дета­лей для создания привлекательного их вида разрабатывают с участи­ем дизайнеров. Специально подбираются цвета для окраски.

Существуют общие критерии красоты, которые одинаково воспринимает и понимает любой человек. Сравним два автомобиля с одинаковыми внешними очертаниями, но один из них имеет неровные стыки элементов и большие зазоры между ними. Никто в этом случае не станет утверждать, что он также красив, как и другой. Что касается удобства, то понимание этого качества доступно каждому, кто использует конкретное изделие. Главные критерии красоты:

- Взаимосоответствие (неразрывная связь) формы, функции и содержания (внутреннего строения).

- Единство и целостность композиции.

Чтобы в полной мере удовлетворять этим критериям, нужно позаботиться о совершенстве как содержания, так и формы.

Если какое-либо изделие в действительности способно выпол­нять определенные функции и/или если оно обладает достаточной проч­ностью и устойчивостью, и если оно способно двигаться с большой скоростью и т. д., то его форма должна выглядеть соответственно этим функциям.

Композиция — это своего рода строение, структура, компоновка, система взаимосвязей элементов. Человек чувствует неудобство:

- когда ему не понятен замысел этого строения, например, когда имеет место бессистемное нагромождение элементов (речь идет не о физических, а о зрительно воспринимаемых категориях);

- когда рассеивается внимание, чувствуется подчиненность элементов двум или более замыслам;

- когда каждый из элементов выглядит изолированным, оторванным один от другого;

- когда не ясно какой из элементов главный, а какие находятся в подчинении и т. п.

Человеку не нравится отсутствие логики и системы. Не всегда это можно понять, а тем более создать систему, зрительно понятую и воспринимаемую как единое целое. Не случайно работа дизайнера высоко ценится за рубежом. В то же время разрабатывать конструкцию отдельно от форми­рования внешнего вида нельзя, так как никакое украшательство не исправит плохое содержание, так же как и самого содержания еще недостаточно, чтобы его однозначно воспринимать как красивую вещь.

Следующее очень древнее правило — элементы должны быть соизмеримы и, в частности, подчинены определенной пропорции. Речь идет в основном о размерах, но относится это также к другим средствам выразительности, например к геометрической форме, рельефу, цвету и даже светотени. Вы никогда не задумывались, почему высота и ширина страницы, картины, оконного проема очень часто соответствуют отношению 3/2 или 2/3, но почти никогда не делают квадратными. Здесь не будем вдаваться в рассуждения, почему такое соотношение, а его называют «золотым сечением», очень часто используют. Существует очень много объяснений такого рода, отметим только, что именно «золотое сечение» позволяет создавать предметы воспринимаемые, как соразмерные. Его определяют таким образом: целое а относится к части b, как часть относится к разности между целым и частью.

«Золотое сечение» характеризуется следующим рядом величин: 0,382: 0,618: 1,000: 1,618: 2,618 и т. д.

Вышеизложенное не нужно воспринимать как догму, так как в отличие от архитектуры зданий в машинах очень трудно форму подчинить данному ряду, но обеспечить пропорциональность формы стоит в любом случае.

ЭРГОНОМИКА — это наука, возникшая на стыке технических наук, психологии, физиологии и гигиены. В ней используются данные анатомии, биомеханики, токсикологии, антропометрии, биофизики. Эргономика изучает функциональные возможности и особенности человека в трудовых процессах с целью создания оптимальных условий, обеспечивающих высокую производительность и открывающих возможности для интеллектуального и физического развития.

Эргономика занимается следующими проблемами:

- оптимизацией физической среды на производстве;

- конструированием средств индикации (световая, цветовая, звуковая сигнализация; лицевые части приборов шкал, символические изображения управляемых объектов на панелях, информацией, например, в виде мнемосхем и т. п.);

- конструированием органов управления;

- компоновкой постов управления;

- организацией рабочих мест.

Концептуально эргономические требования при конструировании машин можно сформулировать так: максимум внимания к человеку через конструкцию технического средства и формирование окружающей среды на производстве.

Учет эргономических требований при создании техники позволяет наиболее эффективно функционировать системе человек — техника — среда, т.е. при минимальном расходе ресурсов человека (время, уровень физиологического и психологического напряжения, здоровье) получать максимум удовлетворенности содержанием труда. Если не обеспечены наилучшие условия взаимодействия человека с техникой, то вряд ли можно рассчитывать на достижение экономического эффекта. Опыт показал, что до 30% проектной эффективности техники не реализуется в процессе эксплуатации, если при создании машины не учитывается удобство работающего с ней человека.

Создание нерациональных и неудобных в управлении и обслуживании машин и оборудования влечет за собой серьезные социальные последствия.Трудящиеся, особенно молодежь, неохотно работают на тракторах, станках и других машинах, если не обеспечены нормальные условия для безопасного и привлекательного труда.

Главная задача на стадии композиционно-конструкторского синтеза -раскрыть и привести в действие связь между всеми элементами и целым в техническом и эстетическом аспектах. На этом этапе происходит непрерывное интегрирование формы: создают объемно-пространствен­ные формы, выявляют рабочие зоны, функциональные оси, учитывают конструктивные, технологические, эргономические и экономические требования. Художник-конструктор графически или скульптурно фиксирует свои идеи. При этом выявляется пластическая характеристика объекта, замысел формы становится зримым.

Далее следует проверка и отработка формы. Форма проверяется чувством и точным расчетом. Каждую деталь увязывают с общим ансамблем по многим направлениям: определяют масштабные отно­шения, ритмические характеристики объектов в различных ракурсах и удалениях, выразительность, информативные качества и т. д. Проверяют также цветофактурные решения.

После доводки и испытания опытно-промышленный образец утверж­дается и служит эталоном при корректировании рабочих чертежей для серийного производства.

коррозионная стойкость - для предохранения от коррозии детали из­готовляют из коррозионно-стойкой стали, цветных металлов и спла­вов на их основе, биметаллов — металлических материалов, состоя­щих из двух слоев (например, из стали и цветного металла), а также применяют различные покрытия (анодирование, никелирование, хромирование, лужение, эмалирование и покрытие красками).

снижение массы деталей - в самолетостроении и некоторых других отраслях промышленности выполнение этого требования является одной из главных расчетно-конструкторских задач.

использование недефицитных и дешевых материалов - это условие должно быть предметом особого внимания во всех случаях при про­ектировании деталей машин. Необходимо экономить цветные метал­лы и сплавы на их основе.

удобство эксплуатации - при проектировании необходимо стремить­ся, чтобы отдельные узлы и детали можно было снять или заменить без нарушения соединения смежных узлов. Все смазочные устройст­ва должны работать безотказно, а уплотнения — не пропускать мас­ла. Движущиеся детали, не заключенные в корпус машины, должны иметь ограждения для безопасности обслуживающего персонала.

транспортабельность машин, узлов и деталей - возможность и удобство, их переноски и перевозки. Например, электродвигатели и редукторы должны иметь на корпусе рым-болт, за который их под­нимают при перемещении. Крупные детали, корпуса гидротурбин, статоры крупных генераторов электрического тока на месте изготов­ления выполняют из отдельных частей, а на месте установки собира­ют в одно целое.

стандартизация - установление обязательных норм на отдельные параметры, нормативно-технические характеристики и так далее. Она имеет большое экономическое значение, так как обеспечивает:

1) возможность массового производства стандартных деталей, что снижает их себестоимость;

2) возможность использования стандартного режущего и измерительного инструмента;

3) легкость замены вышедших из строя деталей при ремонте;

4) экономию труда при конструировании

5) повышение качества конструкции.

Стандартизация деталей и узлов предполагает их унификацию.

УНИФИКАЦИЯ – приведение изделий одинакового функционального назначения к единообразию, включающее обеспечение преемственности при изготовлении и эксплуатации. Например, механизмы подъема передвижения кранов, блоки поворота, выдвижения руки, качения и т. д. Показателем уровня стандартизации и унификации является коэффициент применяемости типоразмерам деталей, определяемый как отношение разности общего числа типоразмеров деталей и числа типоразмеров впервые разработанных деталей к общему числу типоразмеров деталей и изделии.

МОДИФИЦИРОВАНИЕ - переделка машины с целью приспо­собить ее к иным условиям работы, операциям и видам продукции без изменения основной конструкции

АГРЕГАТИРОВАНИЕ -метод конструирования машин на основе применения унифицированных и стандартных составных частей. Агрегатирование сокращает трудоемкость конструирования и изготовления машин, упрощает их эксплуатацию.

УНИВЕРСАЛИЗАЦИЯ - характеризуется расширением функций машин, увеличением диапазона выполняемых ими операций, расширением номенклатуры обрабатываемых деталей.

ВЗИМОЗАМЕНЯЕМОСТЬ - свойство деталей, позволяющее без дополнительной обработки и подгонки собирать их в узлы, а затем в машины и приборы.

Обычно размеры, которые получили из расчетов на прочность, жесткость и т.д., округляют по ГОСТ 6636-69 "Нормальные линейные размеры" до расчетных - номинальных размеров, они и проставляются на чертежах.

При изготовлении деталей полное соответствие между этими размерами и действительными практически невозможно не только из-за недостаточной точности обработки, но из-за различных линейных и объемных коэффициентов температурных расширений элементов.

Для обеспечения сборки и нормальной работы деталей и узлов назначаются наибольшие и наименьшие их размеры, которые определяются экономической целесообразностью предельных отклонений по единой системе допусков и посадок.

Основными критериями качества машин считают:

МОЩНОСТЬ – скорость преобразования энергии;

ПРОИЗВОДИТЕЛЬНОСТЬ – объём работы (продукции, информации), выполняемой в единицу времени;

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ – доля дошедшей до потребителя энергии (мощности);

ГАБАРИТЫ – предельные размеры;

ЭНЕРГОЁМКОСТЬ - расход топлива или электричества отнесённый к объёму работы (пройденному расстоянию, произведённой продукции);

МАТЕРИАЛОЁМКОСТЬ – количество конструкционного материала машины, обычно отнесённого к единице мощности;

ТОЧНОСТЬ – способность максимально соответствовать заданному положению (скорости и т.п.);

ПЛАВНОСТЬ ХОДА – минимальные ускорения при работе машины.

Таковы примерные требования по конструированию машин в отечественной литературе. Теперь рассмотрим рекомендации по учету некоторых факторов при конструировании деталей и узлов машин, приводимых в американской литературе:

1) Все детали машины или конструкции должны передавать нагрузку и совершать необходимые движения эффективно и экономично.

2) Ни одна деталь не должна разрушаться раньше некоторого заданного срока эксплуатации.

3) Каждая деталь должна выполнять предназначенную ей функцию, не мешая функционированию других частей машины.

4) Деталь должна быть такой, чтобы ее можно было изготовить и смонтировать в машине.

5) Стоимость готовой детали должна соответствовать ее назначению.

6) Все детали и занимаемый или объем должны соответствовать назначению.

7) Должна быть обеспечена возможность обслуживания и ремонта машин в процессе всего срока эксплуатации.

8) Машина или конструкция должна не только удовлетворительно функционировать в течение заданного времени, но и быть конкурентоспособной и прибыльной для изготовления.

Разработку обобщенного принципа конструирования деталей машин мы оставляем за читателем, ибо проектирование машин представляет собой итерационный процесс. Создает ли конструктор новое устройство или модернизирует уже существующее он должен стремиться создать оптимальную конструкцию с учетом ограниченности выделенных ему времени и средств.

Появление новых конструкционных материалов, необходимость повышения эксплуатационных показателей, снижения веса и уменьшение объема, стоимости, а также увеличения сроков службы и достижения экологической совместимости вызывает необходимость совершенствования методов расчета. При этом возникает необходимость изучения особенности напряженно-деформированного состояния при динамическом нагружении и влияния полей остаточных напряжений, возникающих в процессе изготовления. Осознание того, что во всех реальных деталях с самого начала существуют трещиноподобные дефекты заставило разработать новые методы исследования распространения трещин при циклических нагружениях. Например, по приведенным последним исследованиям в МГТУ им. Н.Э. Баумана установлено, что микронеровности более 1 мкм и волосины длиной более 20 мкм являются источниками трещинообразования.

Таким образом, необходимость контроля качества изготовления, технического уровня и ремонта стали такими же важными критериями деталей машин, как надежность и работоспособность.

Противоречащие требования, как увеличение мощности и уменьшение размеров машин можно удовлетворить либо разрабатывая новые прочные и жесткие материалы, либо эффективнее используя прочность и жесткость имеющихся материалов. Вторая возможность является основной задачей конструкторов.

Идеальной конструкцией была такая машина, которая полностью разрушалась бы по истечении заранее заданного срока.

Необходимо отметить, что методы предотвращения разрушения конструкции постоянно совершенствуются и изменяются. Это требует от конструктора постоянной работы над новейшей технической литературой.

При выборе машино - приборостроительных материалов и различных конструкций узлов выявляется бесконечное множество факторов.

Так, например, в предлагаемом методе по выбору материалов нами опущены чисто человеческие факторы, по классификации американского ученого Джона Диксона, состоящие из следующих пунктов:

1) Этика.

2) Мнение различных лиц о выбранной вами альтернативе.

3) Сопротивление переменам, боязнь нового и привычка к старому у начальника, клиентов и т.д.

4) Эстетические факторы.

5) Престиж и общественное положение.

6) Личные привязанности, вкусы и предубеждения.

7) Ваши отношения в семье, с начальником и т.д.

8) Сострадание, любовь, ненависть, страх и т.п.

9) Другие факторы.

Если критерии по выбору материалов нами разбиты на 5 групп, то Джон Диксон ограничивается тремя группами, такими, как факторы, связанные с ресурсами, технические факторы и чисто человеческие факторы, приведенные выше.

Под ресурсами понимают время, денежные средства и производственные возможности. Под производственными возможностями подразумеваются как наличие материалов, деталей, технические и научное мастерство, организационные возможности и т.д. Ресурсы, учитываемые при принятии инженерных решений:

1. Финансы.

Каковы будут затраты и прибыль? Какую сумму нужно получить в виде краткосрочного займа и какую – в виде долгосрочного? Имеются ли эти средства? Для каких других проектов необходимы средства? Каковы перспективы данной отрасли промышленности фирмы и отдела? Каковы конкурентные возможности?

2. Оборудование и помещения для проведения научно-исследовательских и проектных работ и средства производства.

Какое оборудование, помещения и средства необходимы? Что имеется? Сколько времени потребуется, чтобы достать его, и во что это обойдется?

3. Специалисты для научно-исследовательской работы, проектирования и производства.

Какие специалисты нужны? Какие имеются? Сколько времени потребуется, чтобы их найти и во что это обойдется?

4. Исходные материалы.

Имеются ли в наличии необходимые материалы? Какова их стоимость?

5. Организация научно-исследовательских работ, проектирования производства и сбыта.

Какие вспомогательные отделы необходимы? Какие отделы имеются? Если их нет, сколько времени потребуется для их создания и во что это обойдется?

6. Ресурсы, связанные с принятием решений.

Во что обойдется принятие решения? Сколько времени оно займет? Имеются ли специалисты, оборудование и т.д.

Для инженерных решений необходимо не только изучение рассматриваемой проблемы, но исследование информации и дополнение факторами для полноты.

К техническим факторам относятся параметры, связанные с инженерным анализом или выработкой требований к конструкции. Технические факторы, учитываемые для принятия инженерных решений следующие: 1) Геометрические факторы-габариты и форма.

2) Вес – общий и отдельных элементов.

3) Прочность – какое звено является слабым?

4) Динамика-колебания, частота собственных колебаний.

5) Первый закон термодинамики.

6) Второй закон термодинамики

7) Электрические эффекты.

8) Магнитные эффекты.

9) Коррозия.

10) Усталость - тепловая или вызываемая напряжением.

11) Ползучесть.

12) Теплопередача – теплопроводностью, конвекцией, излучением.

13) Температурные эффекты.

14) Эффекты, связанные с потоком жидкости, - гидродинамическое сопротивление, трение, расход.

15) Количество движения.

16) Износ – смазка.

17) Энергия - источник, мощность.

18) Инерция.

19) Другие факторы.

Эти технические факторы часто определяют из трех видов ограничений.

Функциональные, областные и экстремальные, которые используются в теории оптимизации, принятия решений и полезности. Теория полезности является молодой наукой и базируется на теориях оптимизации, вероятностей и математической статистике.

Оптимизация предполагает определение значений регулируемых параметров при некоторых ограничениях. Функция, выражающая оптимизируемый параметр, называется целевой функцией. Математические методы оптимизации описывают пути нахождения параметров, которые максимизируют или минимизируют целевую функцию. К методам относятся дифференциальное исчисление, метод двойственных переменных или способ Зенера, метод множителей Лагранжа, вариационное исчисление, численные методы путем поочередного одномерного поиска и линейное программирование.

Существенной чертой процесса принятия метода оптимизации является возможность выбора альтернативных линий поведения, с тем чтобы придать элементам процесса принятия решений большую точность и конкретность.

Таким образом, конкретная линия поведения имеет вероятность успеха несколько меньше единицы. В данном случае затратами могут быть деньги и многие другие факторы, например время, престиж, потеря невосполнимых ресурсов и т.д. Все эти факторы измеряют показатели полезности.





Дата публикования: 2014-10-19; Прочитано: 4739 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...