Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Квантово-механическая модель атома



Современная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).

Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице Менделеева определяется электрическим зарядом его ядра (то есть количеством протонов), в то время как количество нейтронов принципиально не влияет на химические свойства; при этом нейтронов в ядре, как правило, больше, чем протонов (см.: атомное ядро). Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).

Массу атома принято измерять в атомных единицах массы, равных 1⁄12 от массы атома стабильного изотопа углерода 12C.

24.. Строение и эволюция звёзд. Возникают звёзды так: частицы газопылевого облака притягиваются между собой за счет гравитационных сил, возникшая непрозрачная сфера начинает вращаться, захватывая все больше частиц из окружающего пространства, давление и температура в глубине растут, постепенно достигая нескольких миллионов градусов.Когда силы излучения и гравитации уравновешиваются, протозвезда становится звездой. Этот процесс длится от нескольких миллионов лет до нескольких сот миллионов лет. Химический состав звезд в среднем такой: на 10000 атомов водорода приходится 1000 атомов гелия, 5 – кислорода, 2 – азота, 1 – углерода, еще меньше остальных элементов. Из-за высоких температур атомы ионизированы и находятся в состоянии плазмы – смеси ионов и электронов.

25.Характеристика.Происхождение солнечной системы.Солнечная система представляет собой группу планет, их спутников, множество астероидов и метеоритных тел. Все пла­неты Солнечной системы обращаются вокруг Солнца в одном направлении и почти в одной плоскости. Солнце представляет собой звезду среднего размера, его радиус около 700 тыс. км. Возраст Солнца оценивается примерно в 5 млрд лет. Считается, что звезды первого поколения имеют воз­раст на 8—10 млрд лет больше. В Галактике существуют также молодые звезды, которым всего от 100 тыс. до 100 млн лет. Солнечная система обращается вокруг центра Галактики со скоро­стью около 220 км/с. Солнце совершает один оборот вокруг центра Галактики за 250 млн лет. Звезды образуются из космического вещества в ре­зультате его конденсации под действием гравитационных, маг­нитных и других сил.

26).Характеристика Земли как планеты и её эволюция. Земля - это третья от Солнца планета Солнечной системы. Она обращается вокруг звезды по эллиптической орбите (очень близкой к круговой) за период равный 365.24 суток. Земля имеет спутник - Луну, обращающуюся вокруг Солнца. Период вращения планеты вокруг своей оси 23 ч 56 мин 4.1 сек. Вращение вокруг своей оси вызывает смену дня и ночи, а наклон оси и обращение вокруг Солнца - смену времен года.Форма Земли - геоид, приближенно - трехосный эллипсоид, сфероид. Земля обладает магнитным и тесно связанным с ним электрическим полями. Гравитационное поле Земли обуславливает её сферическую форму и существование атмосферы.По современным космогоническим представлениям, Земля образовалась примерно 4.7 млрд. лет назад из рассеянного в протосолнечной системе газового вещества. В результате дифференциации вещества, Земля, под действием своего гравитационного поля, в условиях разогрева земных недр возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки - геосферы: ядро (в центре), мантия, земная кора, гидросфера, атмосфера, магнитосфера. В составе Земли преобладает железо, кислород, кремний, магний. Земная кора, мантия и внутренняя чаять ядра твердые (внешняя часть ядра считается жидкой). От поверхности Земли к центру возрастают давление, плотность и температура. Основные типы земной коры - материковый и океанический, в переходной зоне от материка к океану развита кора промежуточного строения.Большая часть Земли занята Мировым океаном, горы занимают свыше 1/3 поверхности суши. Пустыни покрывают примерно 20% поверхности суши, леса - около 30%, ледники - свыше 10%. Средняя глубина мирового океана около 3800 м. Атмосфера Земли состоит из воздуха - смеси в основном азота и кислорода, остальное-водяные пары, углекислый газ, а также инертные и другие газы. Образование Земли и начальный этап ее развития относятся к догеологической истории. Абсолютный возраст наиболее древних горных пород составляет свыше 3.5 млрд. лет. Геологическая история Земли делится на два неравных этапа: докембрий, занимающий примерно 5/6 всего геологического летоисчисления (около 3 млрд. лет), и фанерозой, охватывающей последние 570 млн. лет. Около 3-3.5 млрд. лет назад в результате закономерной эволюции материи на Земле возникла жизнь, началось развитие биосферы. Совокупность всех населяющих ее живых организмов, так называемое живое вещество Земли, оказала значительное влияние на развитие атмосферы, гидросферы и осадочной оболочки. Новый фактор, оказывающий мощное влияние на биосферу – производственная деятельность человека, который появился на Земле менее 3 млн. лет назад.

Геосферы Земли

Формирование Земли сопровождалось дифференциацией вещества. Результатом этой дифференциации явилось разделение Земли на геосферы - концентрически расположенные слои, различающиеся химическим составом, агрегатным состоянием и физическими свойствами. В центре образовалось ядро Земли, окруженное мантией. Из наиболее легких компонентов вещества, выделившихся из мантии, возникла расположенная над мантией земная кора – так называемая «твердая» Земля, заключающая в себе почти всю массу планеты. Далее возникли водная и воздушная оболочки нашей планеты. Кроме того, Земля обладает гравитационным, магнитным и электрическими полями.

Таким образом, можно выделить ряд геосфер, из которых состоит Земля:

- ядро; - мантия; - литосфера; - гидросфера; - атмосфера; - магнитосфера.

Ядро Земли. Ядро занимает центральную область нашей планеты. Это самая глубокая геосфера. Средний радиус ядра составляет около 3500 км, располагается оно глубже 2900 км и состоит из двух частей – большого внешнего и малого внутреннего ядер. Температура ядра может достигать 4000°С.

Природа внутреннего ядра Земли с глубины 5000 км остается загадкой. Это шар диаметром 2200 км. Возможно, он состоит из никелистого железа без примесей серы и находится в твердом состоянии из-за огромного давления.

Судя по геофизическим данным, внешнее ядро представляет собой жидкость, состоящую из расплавленного железа с примесью никеля и серы. Это связано с тем, что давление в этом слое меньше. Внешнее ядро представляет собой шаровой слой толщиной 2200 км. Жидкое ядро позволяет объяснить наличие магнитного поля Земли и его вариаций, когда в геологическом прошлом нашей планеты неоднократно происходила инверсия магнитных полюсов. Предполагается, что магнитное поле создается процессом, названным эффектом динамо-машины. Роль подвижного элемента динамо играет жидкое ядро, перемещающееся при вращении Земли вокруг своей оси.

Мантия – наиболее мощная оболочка Земли, занимающая 2/3 ее массы и большую часть объема. Она также существует в виде двух шаровых слоев – нижней и верхней мантии. Толщина нижней части мантии – 2000 км, верхней – 900 км. Все слои мантии расположены между радиусами 3450 и 6350 км.

Данные о химическом составе мантии получены на основании анализов наиболее глубинных магматических горных пород, поступивших в верхние горизонты в результате мощных тектонических поднятий с выносом мантийного материала. Материал верхней мантии собран со дна разных участков океана. Предполагают, что мантия Земли в основном сложена из силикатов и железа, прежде всего из минерала оливина.

Благодаря высокому давлению вещество мантии, скорее всего, находится в кристаллическом состоянии. Температура мантии составляет около 2500°С. Именно высокие давления обусловили такое агрегатное состояние вещества, в ином случае указанные температуры привели бы к его расплавлению.

В расплавленном состоянии находится астеносфера – нижняя часть верхней мантии. Это подстилающий верхнюю мантию и литосферу слой. Литосфера как бы «плавает» в нем. В целом же верхняя мантия обладает интересной особенностью – по отношению к кратковременным нагрузкам она ведет себя как жесткий материал, а по отношению к длительным нагрузкам – как пластичный материал.

На не слишком вязкую и пластичную астеносферу опирается более подвижная и легкая литосфера. В целом литосфера, астеносфера и остальные мантии могут рассматриваться в качестве трехслойной системы, каждая из частей которой подвижна относительно других компонентов.

Литосфера – это земная кора с частью подстилающей ее мантии, которая образует слой толщиной порядка 100 км. Земная кора обладает высокой степенью жесткости, но и большой хрупкостью. В верхней части, она слагается гранитами, в нижней – базальтами.

Резкая асимметрия строения поверхности нашей планеты была замечена давно. Поэтому планетарный рельеф делится на две основные области - океаническую и континентальную. Дно океанов и континенты отличаются друг от друга строением земной коры, химическим и петрографическим составом, а также историей геологического развития. Кора имеет повышенную мощность в области континентов и пониженную в областях океанического дна.

Гидросфера - водная оболочка Земли, включающая все воды, находящиеся в жидком, твердом и газообразном состояниях. Гидросфера включает воды океанов, морей, подземные воды и поверхностные воды суши. Некоторое количество воды содержится в атмосфере и в живых организмах.

Водная оболочка Земли представлена на нашей планете Мировым океаном, пресными водами рек и озер, ледниковыми и подземными водами. Общие запасы воды на Земле составляют
1,5 млрд км3. Из этого количества воды 97% приходится на соленую морскую воду, 2% составляет замерзшая вода ледников и 1% – пресная вода. В Мировом океане постоянно происходят поступательные движения масс воды – морские течения. Они образуются под влиянием господствующих ветров, приливных сил Луны и Солнца, а также из-за существования слоев воды разной плотности. Под влиянием вращения Земли все течения в Северном полушарии отклоняются вправо, а в Южном полушарии – влево. По располо-жению течения бывают поверхностными, подповерхностными, глубинными и придонными. По стабильности выделяют постоянные, временные и периодические (приливы и отливы) течения. Примером постоянных течений являются Северные и Южные Пассатные течения. Из низких широт в высокие движутся теплые течения (Гольфстрим), а из высоких широт в низкие – холодные течения (Лабрадорское, Курильское).

Атмосфера – это воздушная оболочка Земли, окружающая ее и вращающаяся вместе с ней. Она состоит из воздуха – смеси газов, состоящей из 78% азота, 21% кислорода,
а также инертных газов, водорода, углекислого газа, паров воды, на которые приходится около
1% объема. Кроме того, воздух содержит большое количество пыли и различных примесей, порождаемых геохимическими и биологическими процессами на поверхности Земли.

Масса атмосферы довольно велика и составляет 5,15 · 1018 кг. Это значит, что каждый кубический метр окружающего нас воздуха весит около 1 кг. Вес всего этого воздуха, давящего на нас, называют атмосферным давлением. Среднее атмосферное давление на поверхности Земли равно 1 атм, или 760 мм рт. ст. Это означает, что на каждый квадратный сантиметр нашего тела давит груз атмосферы массой в 1 кг. С высотой плотность и давление атмосферы быстро убывают. Тропосфера – это нижний слой атмосферы, определяющий погоду на нашей планете. Его толщина – 10–18 км. С высотой падает давление и температура, опускаясь до –55°С. В тропосфере содержится основное количество водяных паров, образуются облака и формируются все виды осадков. Следующий слой атмосферы – это стратосфера, простирающаяся до 50 км в высоту. Нижняя часть стратосферы имеет постоянную температуру, в верхней части наблюдается повышение температуры из-за поглощения солнечного излучения озоном.

Ионосфера – эта часть атмосферы начинается с высоты 50 км и состоит из ионов – электрически заряженных частиц воздуха. Ионизация воздуха происходит под действием Солнца. Ионосфера обладает повышенной электропроводностью и в силу этого отражает короткие радиоволны, позволяя осуществлять дальнюю связь.

С высоты в 80 км начинается мезосфера, роль которой состоит в поглощении озоном, водяным паром и углекислым газом ультрафиолетовой радиации Солнца.

На высоте 90–400 км находится термосфера. В ней происходят основные процессы погло-щения и преобразования солнечного ультрафиолетового и рентгеновского излучений. На высоте более 250 км постоянно дуют ураганные ветры, причиной которых считают космические излучения.

Верхняя область атмосферы, простирающаяся от 450–800 км до 2000–3000 км, называется экзосферой. В ней содержится атомарный кислород, гелий и водород. Часть этих частиц постоянно уходит в мировое пространство.

Магнитосфера – самая внешняя и протяженная оболочка Земли. Она представляет собой область околоземного пространства, физические свойства которой определяются магнитным полем Земли и его взаимодействием с потоками заряженных частиц космического происхождения. С дневной стороны она простирается на 8–24 земных радиусов, с ночной – доходит до нескольких сотен радиусов и образует магнитный хвост Земли. В магнитосфере находятся радиационные пояса.

Магнитное поле Земли образуется во внешней оболочке ядра благодаря циркуляции огромных электрических токов. Поэтому Земля представляет собой огромный магнит с четко выраженными магнитными полюсами. Северный магнитный полюс находится в Северной Америке на полуострове Ботия, Южный магнитный полюс – в Антарктиде на станции Восток.

Сегодня установлено, что магнитное поле Земли не является неизменным. Его полярность менялась несколько раз. Так, 30000 лет назад Северный магнитный полюс находился на Южном полюсе. Кроме того, периодически происходят возмущения магнитного поля – магнитные бури, из-за которых возникают серьезные радиопомехи. Их главной причиной является колебание солнечной активности. Поэтому особенно часты магнитные бури в годы активного Солнца, когда на нем появляется много пятен, а на Земле возникают полярные сияния.

27. Термодинамической системой называется совокупность материальных тел, являющихся объектом изучения и находящихся во взаимодействии с окружающими их телами (или окружающей средой). Это взаимодействие заключается в обмене теплотой и работой между термодинамической системой и окружающей средой. Простейшим примером такой системы может служить газ, находящийся в цилиндре с поршнем, где окружающей средой является цилиндр, поршень, окружающий воздух и др.

Если термодинамическая система не имеет никаких взаимодействий с окружающей средой, то ее называют -изолированной или замкнутой системой. В открытых (неизолированных) системах взаимодействие происходит или непрерывно или периодически.

Тело, посредством которого производится обмен энергией (теплотой, работой), называется рабочим телом.

Параметры и состояние системы. В каждый данный момент термодинамическая система может быть охарактеризована рядом величин, которые в общем случае могут меняться с изменением самой системы в результате взаимодействий ее с окружающей средой. Эти величины называются термодинамическими параметрами. Они взаимосвязаны, и одни из них можно рассматривать в качестве основных, а другие - в качестве производных.

К числу основных параметров относятся такие, которые легко могут быть определены простыми техническими средствами. К таким параметрам относятся: давление р, Па, температура Т,К или t°C и удельный объем, v, м3/кг.

Совокупность названных основных параметров определяет состояние системы в данный момент. Если для такой системы указанные три параметра известны, то состояние системы термодинамически вполне определено. Через изменение этих параметров можно найти изменения других характеристик для данной системы.

Способы описания термодинамических систем делятся на статистические (основываются на индивидуальных свойствах частицы, в основе МКТ(молекулярно-кинетическая теория) и термодинамические (основываются не на индивидуальных свойствах частиц,а на феноменологическом методе)

28. Основные положения молекулярно-кинетической теории:
1)все тела состоят из атомов и молекул. Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.
2)атомы и молекулы находятся в непрерывном хаотическом движении
3)между частицами вещества существуют силы притяжения и отталкивания.
29. Нелинейные системы и их развитие. Система нелинейна, если в разное время, при разных внешних воздействиях ее поведение определяется различными законами. Нелинейная система имеет устойчивые и неустойчивые стационарные состояния. Причем одно и то же стационарное состояние такой системы при одних условиях может быть устойчивым, а при других неустойчивым. Устойчивые стационарные состоянии более присущи самой системе, а неустойчивые характеризуют моменты собственно изменений в ней. Изменяющиеся нелинейные системы отличают множественность стационарных состояний, единство их устойчивости и неустойчивости. Это создает феномен сложного и разнообразного поведения, не укладывающегося в единственную теоретическую схему и, может быть, непредсказуемого в определенные периоды времени. Идея нелинейности включает в себя многовариантность, альтернативность выбора путей эволюции и ее необратимость. Нелинейные системы испытывают влияние случайных, малых воздействий, порождаемых неравновесностью, нестабильностью, выражающихся в накоплениях флуктуаций, бифуркациях (ветвлениях путей эволюции), фазовых и самопроизвольных переходах. В таких системах возникают и поддерживаются локализованные проце ссы (структуры), в которых имеют место интеграция, архитектурное объединение структур по некоторым законам построения эволюционного целого, а также вероятностный (хаотический) распад этих структур на этапе нарастания их сложности. Именно в таких системах чаще всего возникают синергетические явления. При исследованиях сложных нелинейных систем можно выделить два различных подхода в зависимости от того, на что в первую очередь направлено внимание исследователя: на возможные сценарии прохождения точки бифуркации без детализации хаотического поведения в этот момент или непосредственно на поведение системы в хаосе (позиции "метанаблюдателя" и "наблюдателя". Первый подход строится на модели структурно устойчивой системы, с единственной кризисной точкой – точкой бифуркации практически всегда находящейся в состоянии гомеостаза. Это взгляд наблюдателя извне. В арсенале синергетических методов такая ситуация описывается с помощью теории катастроф. Математический метод описания эволюции различных природных процессов был создан Р.Томом. В другом случае – это взгляд на процесс самоорганизации изнутри, когда наблюдатель включен в систему и его наблюдение за нестабильной системой, диалог с ней вносят неконтролируемые возмущения. Соответствующий аппарат развивается на базе теории динамич еского или детерменированного хаоса. овокупность большого числа нелинейных осцилляторов, образующих систему, способна порождать особые структуры – аттракторы, выступающие для исследователя как "цели эволюции". Они могут быть как правильными, просто описываемыми структурами, так и хаотичн ыми состояниями. В первом случае аттракторы характеризуются либо одним конечным состоянием, либо циклически повторяющимся процессом, задаваемым простой математической формулой. В системах же детерминированного хаоса аттракторы приобретают более сложную структуру и становятся "странными аттракторами". Это уже не точка и не предельный цикл, а сложно описываемая область, по которой происходят случайные блуждания.

30. самоорганизация (синергетический подход)

Определение, данное Г. Хакеном в 1980-е гг. в рамках синергетики:

«Самоорганизация — процесс упорядочения (пространственного, временного или пространственно-временного) в открытой системе, за счёт согласованного взаимодействия множества элементов её составляющих».

Характеристики системы:

§ открытая (наличие обмена энергией/веществом с окружающей средой);

§ содержит неограниченно большое число элементов (подсистем);

§ имеется стационарный устойчивый режим системы, в котором элементы взаимодействуют хаотически (некогерентно).

Характеристики процесса:

§ интенсивный обмен энергией/веществом с окружающей средой, причём совершенно хаотически (не вызывая упорядочение в системе);

§ макроскопическое поведение системы описывается несколькими величинами — параметром порядка и управляющими параметрами (исчезает информационная перегруженность системы);

§ имеется некоторое критическое значение управляющего параметра (связанного с поступлением энергии/вещества), при котором система спонтанно переходит в новое упорядоченное состояние (переход к сильному неравновесию);

§ новое состояние обусловлено согласованным (когерентным) поведением элементов системы, эффект упорядочения обнаруживается только на макроскопическом уровне;

§ новое состояние существует только при безостановочном потоке энергии/вещества в систему. При увеличении интенсивности обмена система проходит через ряд следующих критических переходов; в результате структура усложняется вплоть до возникновения турбулентного хаоса.

Для однозначности определения термина, его связи с характеристиками системы и процесса, как правило, делается ссылка на один из трёх стандартных примеров самоорганизации:

§ лазер — пространственное упорядочение;

§ ячейки Рэлея — Бенара — пространственное упорядочение;

§ реакция Белоусова — Жаботинского — пространственно-временное упорядочение;





Дата публикования: 2015-02-20; Прочитано: 315 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...