Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Диференціальне числення функції однієї змінної



Основні теореми про границі

,

,

.

Наслідки

,

.

Перша важлива границя розкриває невизначеність : і .

Друга важлива границя розкриває невизначеність : або і .

Якщо або , то функцію – називають нескінченно малою функцією.

Еквівалентні нескінченно малі функції (, коли ):

Існують односторонні границі функції: правостороння і лівостороння . Функція неперервна в точці , якщовонавизначена в ній, односторонні границі в точці існують і рівні між собою. У противному випадку точка є точкою розриву. Маємо усувний розрив, якщо функція в точці невизначена, а границя функції в точці існує. Розрив першого роду, якщо функція в точці невизначена, односторонні границі існують, але не рівні між собою. В цьому випадку стрибок функції визначається формулою . Маємо розрив другого роду, якщо хоча б одна з односторонніх границь не існує або дорівнює нескінченності.

Правила диференціювання. Маємо функції і , t.

Таблиця похідних для функцій .

Для степенево-показникової функції :

Для гіперболічних функцій:

Похідні мають вигляд:

Функція є неявно заданою, якщо рівняння неможливо розв’язати відносно функції . При знаходженні похідної такої функції необхідно рівняння про диференціювати зліва направо, враховуючи, що і . Отримане рівняння розв’язують відносно .

У деяких випадках при знаходженні похідної доцільно функцію спочатку прологарифмувати, а потім знайти похідну як від неявної функції (логарифмічне диференціювання).

Якщо функція параметрично задана , то похідна знаходиться за формулою .

Диференціал функції знаходиться за формулою: .

Враховуючи, що є функцією, то її можна диференціювати. Дістанемо і так далі: .

Для знаходження другої похідної параметрично заданої функції застосовується формула: , або .

Правило Лопіталя застосовують для розкриття невизначеностей. Наприклад, для і матимемо .

Диференціальне числення застосовують для дослідження функцій, знаходження найбільшого та найменшого значення функції на відрізку, знаходження рівнянь дотичної та нормалі до графіка функції в заданій точці.

Задача 16. Знайти область визначення D(y) функції

Розв’язання: Область визначення функції складається з обмежень для кожного доданку і утворює систему нерівностей:

Þ

 
 

Розв’яжемо систему нерівностей методом інтервалів.

Розв’язок системи нерівностей: , тому .

Задача 17. Знайти границі функції, не застосовуючи правило Лопіталя:

1) при а) , б) в)

Розв’язання:

а) За умовою . Значення є граничним значенням змінної. Підставимо в чисельник і знаменник дробу замість . Будемо мати для чисельника і для знаменника . Так як відношення отриманих значень є величина стала, то вона є границею:

;

б) За умовою . Значення є граничним значенням змінної. Чисельник і знаменник дробу при цьому значенні дорівнюють нулю. Маємо невизначеність . Виконаємо наступні дії. Ділимо чисельник і знаменник дробу на , тобто на :

  2 x 2+9 x -5 x - 1/2
  2 x 2- x 2 x +10
    10 x -5  
    10 x -5  
     
  6 x 2- x -1 x - 1/2
  6 x 2-3 x 6 x +2
    2 x -1  
    2 x -1  
     

Переходимо до границі відношення часток від ділення. Матимемо

Зауваження. Замість ділення можна розкласти чисельник і знаменник на множники і зробити скорочення однакових виразів.

в) За умовою . Підставимо замість змінної . Маємо невизначеність . Перетворимо дріб, поділивши його чисельник і знаменник на змінну в найвищому степені знаменника, тобто на . Дістанемо:

2)

Розв’язання: Коли , то чисельник і знаменник дробу при цьому значенні дорівнюють нулю. Маємо невизначеність , якій сприяє ірраціональність. Позбавимось цієї ірраціональності. Для цього помножимо чисельник і знаменник на вираз, спряжений до , тобто на , а потім чисельник і знаменник поділимо на :

.

3) .

Розв’язання: При чисельник і знаменник дробу дорівнюють нулю. Маємо невизначеність . Застосовуємо першу важливу границю. Оскільки то

.

Зауваження. При розв’язуванні можна застосовувати таблицю еквівалентності нескінченно малих функцій.

4)

Розв’язання: При маємо невизначеність . Перетворимо під граничний вираз так, щоб можна було застосувати другу важливу границю. Поділимо чисельник на знаменник або виділимо в чисельнику вираз знаменника і перетворений чисельник поділимо на знаменник, щоб мати одним з доданків одиницю. Дістанемо:

. Оскільки і =

, то

Задача 18. Дослідити на неперервність функцію, установити характер точок розриву. Зробити схематичне креслення.

а) .

Розв’язання: Оскільки дана функція показникова, то вона неперервна при всіх значеннях , крім . В цій точці функція невизначена, тобто має в ній розрив. З¢ясуємо характер розриву.

Знайдемо односторонні границі функції в точці :

Оскільки одна з границь дорівнює , то – точка розриву другого роду. Зробимо схематичне креслення


б)

Розв’язання: Ця функція неперервна при всіх значеннях х, крім . В цій точці вона невизначена. Точка є точкою розриву. З¢ясуємо характер розриву. Обчислимо односторонні границі функції в точці .

Оскільки границі існують, але , маємо розрив першого роду. Стрибок функції обчислюємо:

. Зробимо схематичне креслення.

в)

Розв’язання: Область визначення функції . На інтервалах , , функція неперервна. Розриви можуть бути лише в точках і . Обчислимо односторонні границі функції в точці :

і .

Оскільки то в точці задана функція неперервна. Обчислимо односторонні границі функції в точці :

і .

Так як , то функція в точці має розрив першого роду. Стрибок функції в точці розриву:

Зробимо схематичне креслення:

 
 


Задача 19. Знайти похідні заданих функцій:

а)

Розв’язання:

= .

б)

Розв’язання:

.

в)

Розв’язання:

.

г)

Розв’язання: Застосуємо логарифмічне диференціювання. Прологарифмуємо рівняння : або . При диференціюванні вважаємо, що :

,

Враховуючи, що , матимемо:

д)

Розв’язання: Функція у неявно задана. Диференціюємо рівняння, вважаючи, що .

Виконаємо необхідні перетворення і розвяжемо рівняння відносно :

;

;

Таким чином, .

Задача 20. Знайти першу і другу похідні заданих функцій.

а)

Розв’язання: Знайдемо , а потім :

;

б) Знайти похідні параметрично заданих функцій. Застосуємо наведені вище формули.

1)

Розв’язання: Знайдемо і . Матимемо . Знайдемо і . Тоді друга похідна

.

2)

Розв’язання: Знайдемо ,

. Тоді перша похідна . Знайдемо . Друга похідна функції визначається формулою .

Задача 21. Знайти границю, застосувавши правило Лопіталя.

Розв’язання: Маємо невизначеність вигляду . Зведемо цю невизначеність до вигляду (приведемо до спільного знаменника), а потім застосуємо правило Лопіталя:

.

Задача 22. Знайти рівняння дотичної до графіка функції в точці перетину його з віссю абсцис та рівняння нормалі в точці перетину його з віссю ординат.

Розв’язання: Знайдемо точки перетину графіка функції з осями координат:

а) з віссю : Þ ; Þ ;

б) з віссю : Þ ; Þ .

Знайдемо

. Обчислимо похідну в точках і :

,

Запишемо рівняння дотичної в точці :

Þ .

Запишемо рівняння нормалі в точці :





Дата публикования: 2015-02-18; Прочитано: 408 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.028 с)...