Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

высоковольтные с применением повышающих трансформаторов



Для получения электроэнергии 6,3 кВ и 10,5 кВ необходимо размещение повышающих трансформаторов.

Устройство дизельной электростанции

Основным элементом дизельной электроустановки (станции или агрегата) является дизель-генератор, состоящий из дизельного двигателя, электрического генератора трехфазного переменного тока, систем охлаждения, смазочной, топливоподачи и пультов управления.

На дизельных электростанциях применяют генераторы типов СГД (синхронный генератор, дизельный), ЕСС (единой серии с самовозбуждением), ЕС (единой серии), МСД открытого и МСА защищенного исполнения с самовентилированием и др.

Помимо дизель-генератора ДЭС включает в себя:

системы охлаждения дизеля с насосами, баками и трубопроводами;

системы питания топливом дизеля с топливными баками, насосами и трубопроводами;

системы смазки дизеля с масляными баками, масляными радиаторами, насосами и маслопроводами;

системы запуска дизеля с электрическим стартером, аккумуляторной батареей и зарядным генератором или воздушным с баллонами компрессором, пусковыми клапанами и трубопроводами;

системы подогрева дизеля с подогревателями, лампами и змеевиками для подогрева, отопительно-вентиляционными установками;

щиты управления, защиты и сигнализации дизель-генераторов с комплектом соединительных кабелей;

щиты распределения электроэнергии от ДЭС к потребителю;

аккумуляторную батарею с выпрямителями для ее подзаряда, которая служит для запуска дизеля и питания постоянным током схем управления, сигнализации, цепей возбуждения.

Классификация ДЭС

Назначение дизельэлектростанций

По назначению ДЭС делят на основные, резервные и аварийные.

Основные применяют в качестве автономных источников электропитания на строительстве, в сельском хозяйстве, на лесозаготовках и т.д., т.е. там, где по тем или иным причинам невозможно или нецелесообразно использование стационарных линий электропередачи.

Резервные используют для замены вышедших из строя основных агрегатов или как резервный источник питания при прекращении подачи электроэнергии от ввода стационарной внешней сети.

Аварийные применяют в больницах, на постах связи и других объектах, для которых недопустим перерыв электропитания. Они в любой момент должны быть готовы принять на себя часть или всю нагрузку в случае исчезновения напряжения на объектах.

Конструкция ДЭС

По конструктивному исполнению ДЭС делят на стационарные и передвижные.

Передвижные дизельные агрегаты обозначаются буквами АД, стационарные АСД или ДГ, автоматизированные агрегаты обозначаются дополнительной буквой А.

Передвижные дизельные электростанции имеют капот или кузов, установленные на автомобильном прицепе или другом средстве передвижения. Стационарные ДЭС устанавливают и в специально оборудованных передвижных вагонах (энергопоездах).

Передвижные дизельные электростанции (ДЭС) выполнены как комплектные электроустановки, смонтированные на каком-либо транспортном средстве и защищенные от атмосферных воздействий. Дизельные электроагрегаты также выполняют как комплектные установки в виде отдельных блоков, чаще всего смонтированными на общей раме.

Передвижные ДЭС предназначены для работы на открытом воздухе при температуре от -50 до +40°C, должны иметь защиту от атмосферных воздействий и обеспечивать работу ДЭС в условиях вибрации и тряски. Передвижные дизельные электростанции размещают на автомобильном прицепе, в кузове автомобиля или в закрытом вагоне. Типы передвижных ДЭС. с металлическим кожухом (капотом), с капотом на автомобильном прицепе, в кузове автомобильного прицепа или автомобиля.

Передвижные электростанции типа ЭСД комплектуются дизельными агрегатами марки АД (АСД), а электростанции ЭСДА — агрегатами АД и АСДА.

Агрегаты типа АСД, АСДА мощностью 30—100 кВт используются в качестве резервных электроустановок. Для них применяют также электростанции типа ДЭС. Для стационарных резервных электростанций большей мощности (300—500 кВт) используют дизельные электроагрегаты типов АС, АСДА, ДГА и др. Такие резервные электростанции сооружают в закрытых помещениях. Их располагают в непосредственной близости от резервируемого объекта или в центре нагрузок, для резервирования трансформаторных подстанций потребителей с учетом резервирования в первую очередь наиболее ответственных потребителей электроэнергии.

Стационарные дизельные электроустановки предназначены для нормальной работы и выработки электроэнергии необходимого качества при температуре окружающего воздуха от +8 до +40°С, высоте над уровнем моря не выше 1000 м и относительной влажности воздуха до 98% при +25°С. Передвижные электроустановки вырабатывают электроэнергию при колебаниях температуры окружающего воздуха от —50 до +50°С при той же его влажности и установке над уровнем моря на высоте до 4000 м.

На стационарных дизельных электростанциях (ДЭС) устанавливают четырёхтактные (реже двухтактные) дизели мощностью 110, 220, 330, 440 и 735 квт. Стационарные ДЭС средней мощности не превосходят 750 квт, большие ДЭС сооружаются мощностью до 2200 квт и более.

Стационарные дизель электростанции (ДЭС) предназначены для работы в закрытых помещениях с температурой окружающего воздуха от +8 до +40°С, при этом электроагрегаты обязательно должны быть установлены на фундаменте.

Различают следующие виды и типы ДЭС:

по области применения, для линий связи, энергопоездов, строительства, сельского хозяйства и т.д.;

по мощности, малой мощности - до 50 кВт, средней - до 200 кВт и большой выше 200 кВт;

по автоматизации: первой, второй или третьей степени автоматизации,

по системе охлаждения дизеля. с воздушной, водо-воздушной (радиаторной) или водо-водяной (двухконтурной).

Кроме того, часто электростанции подразделяются на силовые, осветительные и специального назначения (зарядные, инструментальные и т.д.).

Область применения дизельных электростанций:

Дизельные электростанции могут использоваться в качестве основных источников питания, при отсутствии централизованного электроснабжения, а также в качестве резервных источников питания, в аварийном режиме, в случае временного отсутствия тока в электросети.

Дизельные электростанции применяются в коммерческих и социальных организациях, специальных службах и частном секторе:

загородные дома, коттеджи;

строительные компании, подрядные организации;

торговые организации, магазины, автомойки, автозаправки;

МВД, МЧС, аварийные службы, службы ЖКХ;

больницы, школы, детские сады.

Дизельные электростанции мобильны, автономны, поэтому широко используются в труднодоступных районах, а также для электроснабжения сельскохозяйственных потребителей. В настоящее время дизель-генераторы используются в качестве резервных аварийных источников питания систем собственных нужд АЭС и крупных ГРЭС.

Солнечные электростанции (СЭС)

Солнечная энергетика. Солнечная электростанция. Принцип работы современных солнечных электростанций. Первые опыты использования солнечной энергии. Башенные и модульные электростанции

Солнечная энергетика

Солнечная энергетика - направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

Солнечная электростанция

Солнечная электростанция - инженерное сооружение, служащее для преобразования солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.

Принцип работы современных солнечных электростанций

Принцип работы современных солнечных электростанций (СЭС) основан на сборе сконцентрированной солнечной энергии при помощи зеркал и отражении солнечных лучей на приемники, которые собирают солнечную энергию и преобразуют его в тепло. Эта тепловая энергия может быть использована для производства электроэнергии с помощью паровой турбины или теплового двигателя, который приводит в действие генератор.

Рис.1. Принцип действия солнечной электростанции

Получение электроэнергии от солнца давно применяется во всем мире. Главной задачей ученых на данный момент является необходимость так усовершенствовать имеющиеся технологии, чтобы как можно больше увеличить их КПД.

Производство электроэнергии из солнечной энергии — тема очень актуальная и интересная для многих государств в сегодняшнее время. Малые солнечные электростанции могут обеспечить электроэнергией дома, предприятия, общественные здания и сохранят богатство глубинных недр земли. Большие солнечные энергетические системы способны вырабатывать неограниченное число электроэнергии и способствовать развитию электроэнергетической отрасли в мировом масштабе.

Фотоэлектрические элементы, названные в ученой среде как солнечные элементы, являются устройствами из полупроводниковых материалов и служат для выработки электричества. Фотоэлектрические элементы бывают разных размеров, объемов и форм. Их чаще всего объединяют между собой в фотоэлектрические модули, а модули — соединяют в фотоэлектрические батареи.

Фотоэлектрические (PV) элементы, фотомодули и устройства преобразуют солнечный свет в электрическую энергию. Понятие фотогальваники или выработки тока из солнечной энергии, можно в буквальном смысле охарактеризовать, как свет и электричество.

Впервые это понятие упоминалось примерно в 1890 году, как «photovoltaic» — фотоэлектрический (фотогальванический) и имело две составляющие: фото, происходит от греческого слова свет и напряжения, связанного с именем пионера Алессандро Вольта в области электричества. Фотоэлектрические материалы и устройства преобразующие энергию света в электрическую энергию, были открыты известным французским физиком Эдмоном Беккерелем еще в 1839 году.

Беккерель смог открыть процесс использования солнечного света для получения электрического тока при помощи твердого материала. Но потребовалось, чтобы прошло больше полувека, чтобы ученые по-настоящему смогли понять этот процесс и узнать, что фотоэлектрический или фотогальванический эффект вызывают только определенные материалы способные преобразовывать энергию света в электрическую энергию на атомном уровне.

Сегодня фотоэлектрические системы стали важной частью нашей повседневной жизни. Мини солнечные электростанции применяются для обеспечения питания у мелких приборов и приспособлений используемых в быту, таких как, калькуляторы, наручные часы или зарядное устройство для сотового телефона. Более сложные — применяются для спутников связи, водяных насосов, уличного освещения, работы бытовых приборов и машин в некоторых домах и на рабочих местах. Многие дороги и дорожные знаки, также теперь работает с помощью фотоэлектрических элементов или модулей.

Впервые на практическую возможность использования людьми огромной энергии Солнца указал основоположник теоретической космонавтики К.Э. Циолковский в 1912 году во второй части своей книги: “Исследования мировых пространств реактивными приборами”. Он писал: “Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два миллиарда раз большую, чем та, которую человечество имеет на Земле”.

Энергия солнца может быть использована как в земных условиях, так и в космосе. Наземные солнечные электростанции следует строить в районах расположенных как можно ближе к экватору с большим количеством солнечных дней. В настоящее время солнечную энергию экономически целесообразно использовать для горячего водоснабжения сезонных потребителей типа спортивно-оздоровительных учреждений, баз отдыха, дачных поселков, а также для обогрева открытых и закрытых плавательных бассейнов.

Первые опыты использования солнечной энергии

В 1600 г. во Франции был создан первый солнечный двигатель, работавший на нагретом воздухе и использовавшийся для перекачки воды. В конце XVII в. ведущий французский химик А. Лавуазье создал первую солнечную печь, в которой достигалась температура в 1650 С и нагревались образцы исследуемых материалов в вакууме и защитной атмосфере, а также были изучены свойства углерода и платины. В 1866 г. француз А. Мушо построил в Алжире несколько крупных солнечных концентраторов и использовал их для дистилляции воды и приводов насосов. На всемирной выставке в Париже в 1878 г. А. Мушо продемонстрировал солнечную печь для приготовления пищи, в которой 0,5 кг мяса можно было сварить за 20 минут. В 1833 г. в США Дж. Эриксон построил солнечный воздушный двигатель с параболоцилиндрическим концентратором размером 4,8* 3,3 м. Первый плоский коллектор солнечной энергии был построен французом Ш.А. Тельером. Он имел площадь 20 м 2 и использовался в тепловом двигателе, работавшем на аммиаке. В 1885г. Была предложена схема солнечной установки с плоским коллектором для подачи воды, причем он был смонтирован на крыше пристройки к дому.

Первая крупномасштабная установка для дистилляции воды была построена в Чили в 1871 г. американским инженером Ч. Уилсоном. Она эксплуатировалась в течение 30 лет, поставляя питьевую воду для рудника.

В 1890 г. профессор В.К. Церасский в Москве осуществил процесс плавления металлов солнечной энергией, сфокусированной параболоидным зеркалом, в фокусе которого температура превышала 3000 С.

Преобразование солнечной энергии в теплоту, работу и электричество

Солнце - гигантское светило, имеющее диаметр 1392 тыс. км. Его масса (2*10 30 кг) в 333 тыс. раз превышает массу Земли, а объем в 1,3 млн. раз больше объема Земли. Химический состав Солнца: 81,76 % водорода, 18,14 % гелия и 0,1% азота. Средняя плотность вещества Солнца равна 1400 кг/м3. Внутри Солнца происходят термоядерные реакции превращения водорода в гелий и ежесекундно 4 млрд. кг материи преобразуется в энергию, излучаемую Солнцем в космическое пространство в виде электромагнитных волн различной длины.

Солнечную энергию люди используют с древнейших времен. Еще в 212г. н.э. с помощью концентрированных солнечных лучей зажигали священный огонь у храмов. Согласно легенде Приблизительно в то же время греческий ученый Архимед при защите родного города поджег паруса римского флота.

Солнечная энергия может быть преобразована в тепловую, механическую и электрическую энергию, использована в химических и биологических процессах. Солнечные установки находят применение в системах отопления и охлаждения жилых и общественных зданий, в технологических процессах, протекающих при низких, средних и высоких температурах. Они используются для получения горячей воды, опреснения морской или минерализированной воды, для сушки материалов и сельскохозяйственных продуктов и т.п. Благодаря солнечной энергии осуществляется процесс фотосинтеза и рост растений, происходят различные фотохимические процессы.

Солнечная энергия преобразуется в электрическую на солнечных электростанциях (СЭС), имеющих оборудование, предназначенное для улавливания солнечной энергии и ее последовательного преобразования в теплоту и электроэнергию. Для эффективной работы солнечных электростанций (СЭС) требуется аккумулятор теплоты и система автоматического управления.

Улавливание и преобразование солнечной энергии в теплоту осуществляется с помощью оптической системы отражателей и приемника сконцентрированной солнечной энергии, используемой для получения водяного пара или нагрева газообразного или жидкометаллического теплоносителя (рабочего тела).

Для размещения солнечных электростанций лучше всего подходят засушливые и пустынные зоны.
На поверхность самых больших пустынь мира общей площадью 20 млн.км 2 (площадь Сахары 7 млн. км 2) за год поступает около 5*10 16 кВт*ч солнечной энергии. При эффективности преобразования солнечной энергии в электрическую, равной 10%, достаточно использовать всего 1 % территории пустынных зон для размещения СЭС, чтобы обеспечить современный мировой уровень энергопотребления.

Башенные и модульные электростанции

В настоящее время строятся солнечные электростанции в основном двух типов: солнечные электростанции (СЭС) башенного типа и солнечные электростанции (СЭС) распределенного (модульного) типа.

Идея, лежащая в основе работы солнечных электростанций башенного типа, была высказана более 350 лет назад, однако строительство СЭС этого типа началось только в 1965г., а в 80-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах.

В башенных солнечных электростанциях (СЭС) используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем значительно сложна, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550 С, воздух и другие газы - до 1000 С, низкокипящие органические жидкости (в том числе фреоны) - до 100 С, жидкометаллические теплоносители - до 800 С.

Главным недостатком башенных солнечных электростанций являются их высокая стоимость и большая занимаемая площадь. Так, для размещения солнечных электростанциях мощностью 100 МВт требуется площадь в 200 га, а для АЭС мощностью 1000 МВт - всего 50 га.
Башенные СЭС мощностью до 10 МВт нерентабельны, их оптимальная мощность равна 100 МВт, а высота башни 250м.

В СЭС распределительного (модульного) типа используется большое число модулей, каждый из которых включает параболо-цилиндрический концентратор солнечного излучения и приемник, расположенный в фокусе концентратора и используемый для нагрева рабочей жидкости, подаваемой в тепловой двигатель, который соединен с электрогенератором. Самая крупная СЭС этого типа построена в США и имеет мощность 12,5 МВт.

При небольшой мощности СЭС модульного типа более экономичны чем башенные. В солнечных электростанциях (СЭС) модульного типа обычно используются линейные концентраторы солнечной энергии с максимальной степенью концентрации около 100.

В соответствии с прогнозом в будущем СЭС займут площадь 13 млн.км2 на суше и 18 млн.км2 в океане.

Приливные электростанции (ПЭС)

Приливная электростанция

Приливная электростанция (ПЭС), электростанция, преобразующая энергию морских приливов в электрическую. ПЭС использует перепад уровней "полной" и "малой" воды во время прилива и отлива. Перекрыв плотиной залив или устье впадающей с море (океан) реки (образовав водоём, называют бассейном ПЭС), можно при достаточно высокой амплитуде прилива (>4 м) создать напор, достаточный для вращения гидротурбин и соединённых с ними гидрогенераторов, размещенных в теле плотины.

При одном бассейне и правильном полусуточном цикле приливов ПЭС может вырабатывать электроэнергию непрерывно в течение 4-5 ч с перерывами соответственно 2-1 ч четырежды за сутки (такая ПЭС называется однобассейновой двустороннего действия). Для устранения неравномерности выработки электроэнергии бассейн ПЭС можно разделить плотиной на два или три меньших бассейна, в одном из которых поддерживается уровень "малой", а в другом - "полной" воды; третий бассейн - резервный; гидроагрегаты устанавливаются в теле разделительной плотины. Но и эта мера полностью не исключает пульсации энергии, обусловленной цикличностью приливов в течение полумесячного периода. При совместной работе в одной энергосистеме с мощными тепловыми (в т. ч. и атомными) электростанциями энергия, вырабатываемая ПЭС, может быть использована для участия в покрытии пиков нагрузки энергосистемы, а входящие в эту же систему ГЭС, имеющие водохранилища сезонного регулирования, могут компенсировать внутримесячные колебания энергии приливов.

На ПЭС устанавливают капсульные гидроагрегаты, которые могут использоваться с относительно высоким кпд в генераторном (прямом и обратном) и насосном (прямом и обратном) режимах, а также в качестве водопропускного отверстия. В часы, когда малая нагрузка энергосистемы совпадает по времени с "малой" или "полной" водой в море, гидроагрегаты ПЭС либо отключены, либо работают в насосном режиме - подкачивают воду в бассейн выше уровня прилива (или откачивают ниже уровня отлива) и т. о. аккумулируют энергию до того момента, когда в энергосистеме наступит пик нагрузки. В случае, если прилив или отлив совпадает по времени с максимумом нагрузки энергосистемы, ПЭС работает в генераторном режиме.

Использование приливной энергии ограничено главным образом высокой стоимостью сооружения ПЭС (стоимость сооружения ПЭС Ране почти в 2,5 раза больше, чем обычной речной ГЭС такой же мощности). В целях её снижения в СССР впервые в мировой практике строительства ГЭС при возведении ПЭС был предложен и успешно осуществлен т. н. наплавной способ, применяющийся в морском гидротехническом строительстве (тоннели, доки, дамбы и т.п. сооружения). Сущность способа состоит в том, что строительство и монтаж объекта производятся в благоприятных условиях приморского промышленного центра, а затем в собранном виде объект буксируется по воде к месту его установки. Таким способом в 1963-68 на побережье Баренцева моря в губе Кислой (Шалимской) была сооружена первая в СССР опытно-промышленная ПЭС. Здание ПЭС (36x18x15 м) из тонкостенных элементов (толщиной 15-20 см), обеспечивающих высокую прочность при небольшой массе сооружения, было возведено в котловане на берегу Кольского залива, близ г. Мурманска. После монтажа оборудования и испытания корпуса здания на водонепроницаемость котлован был затоплен, здание на плаву вывели в море и отбуксировали в узкое горло губы Кислой. Здесь во время отлива оно было установлено на подводное основание и соединено сопрягающими дамбами с берегами; тем самым было перекрыто горло губы и создан бассейн ПЭС. В здании ПЭС предусмотрено размещение 2 обратимых гидроагрегатов мощностью 400 квт каждый. 28 декабря 1968 ПЭС дала промышленный ток. Создание ПЭС Ране и Кислогубской ПЭС и их опытная эксплуатация позволили приступить к составлению проектов Мезенской ПЭС (6-14 Гвт) в Белом море, Пенжинской (35 Гвт) и Тугурской (10 Гвт) в Охотском море, а также ПЭС в заливах Фанди и Унгава (Канада) и в устье р. Северн (Великобритания).





Дата публикования: 2015-02-18; Прочитано: 673 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.015 с)...