Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Реактор-размножитель



Ядерный реактор-размножитель обладает чудесной способностью, вырабатывая энергию, в то же время производить еще и новое ядерное топливо. К тому же он работает на более распространенном изотопе урана238U (преобразуя его в делящийся материал плутоний). Считается, что при использовании реакторов-размножителей запасов урана хватит не менее чем на 6000 лет. По-видимому, это ценная альтернатива ядерным реакторам нынешнего поколения.


Теплофикационные станции (ТЭС)

ТЭС, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Среди ТЭС преобладают тепловые паротурбинные (ТПЭС), на которых тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора (обычно синхронного генератора). В качестве топлива на таких ТЭС используют уголь (преимущественно), мазут, природный газ, лигнит, торф, сланцы.

Первая паровая турбина, нашедшая практическое применение, была изготовлена шведским инженером Густавом Лавалем в 1889 г. Для работы паровой турбины за счет энергии, освобождаемой при сжигании каменного угля или мазута, вода в котле нагревается и превращается в пар. Пар нагревается до температуры более 500 °С и при высоком давлении выпускается из котла через сопло. При выходе пара внутренняя энергия нагретого пара преобразуется в кинетическую энергию струи пара. Скорость струи пара может достигнуть 1000 м/с. Струя пара направляется на лопатки турбины и приводит турбину во вращение. На одном валу с турбиной находится ротор электрического генератора. Таким образом энергия топлива в конечном счете преобразуется в электрическую энергию.

Современные паровые турбины обладают высоким КПД преобразования кинетической энергии струи пара в механическую энергию, превышающим 90%. Поэтому электрические генераторы практически всех тепловых и атомных электростанций мира, дающие более 80% всей вырабатываемой электроэнергии, приводятся в действие паровыми турбинами.

Температура пара, применяемого в современных паротурбинных установках, не превышает 580 °С (температура нагревателя T 1 =853 К), а температура пара на выходе из турбины обычно не ниже 30 °С (температура холодильника T 2 =303 К); поэтому максимальное значение КПД паротурбинной установки как тепловой машины равно , а реальные значения КПД паротурбинных конденсационных электростанций составляют лишь около 40%. Мощность современных энергоблоков котел - турбина - генератор достигает 1,2·106 кВт.

ТПЭС, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. На ГРЭС вырабатывается около электроэнергии, производимой на ТЭС. ТПЭС, оснащенные теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называемым теплоэлектроцентралями (ТЭЦ); ими вырабатывается около электроэнергии, производимой на ТЭС.

ТЭС с приводом электрогенератора от газовой турбины называются газотурбинными электростанциями (ГТЭС). В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с температурой 750-900 С поступают в газовую турбину, вращающую электрогенератор. Кпд таких ТЭС обычно составляет 26-28%, мощность - до нескольких сотен Мвт. ГТЭС обычно применяются для покрытия пиков электрической нагрузки.

ТЭС с парогазотурбинной установкой, состоящей из паротурбинного и газотурбинного агрегатов, называется парогазовой электростанцией (ПГЭС). кпд которой может достигать 42 - 43%. ГТЭС и ПГЭС также могут отпускать тепло внешним потребителям, то есть работать как ТЭЦ.

Тепловые электростанции используют широко распространенные топливные ресурсы, относительно свободно размещаются и способны вырабатывать электроэнергию без сезонных колебаний. Их строительство ведется быстро и связано с меньшими затратами труда и материальных средств. Но у ТЭС есть существенные недостатки. Они используют невозобновимые ресурсы, обладают низким КПД (30-35%), оказывают крайне негативное влияние на экологическую обстановку. ТЭС сего мира ежегодно выбрасывают в атмосферу 200-250 млн. т золы и около 60 млн. т ернистого ангидрида, а также поглощают огромное количество кислорода. Установлено, что уголь в микродозах почти всегда содержит U238, Th232 и радиоактивный изотоп углерода. Большинство ТЭС России не оснащены эффективными системами очистки уходящих газов от оксидов серы и азота. Хотя установки, работающие на природном газе экологически существенно чище угольных, сланцевых и мазутных, вред природе наносит прокладка газопроводов (особенно в северных районах).

Первостепенную роль среди тепловых установок играют конденсационные электростанции (КЭС). Они тяготеют и к источникам топлива, и к потребителям, и поэтому очень широко распространены.

Чем крупнее КЭС, тем дальше она может передавать электроэнергию, т.е. по мере увеличения мощности возрастает влияние топливно-энергетического фактора. Ориентация на топливные базы происходит при наличии ресурсов дешевого и нетранспортабельного топлива (бурые угли Канско-Ачинского бассейна) или в случае использования электростанциями торфа, сланцев и мазута (такие КЭС обычно связаны с центрами нефтепереработки).

ТЭЦ (теплоэлектроцентрали) представляют собой установки по комбинированному производству электроэнергии и теплоты. Их КПД доходит до 70% против 30-35% на КЭС. ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет 15-20 км. Максимальная мощность ТЭЦ меньше, чем КЭС.

В последнее время появились принципиально новые установки:

газотурбинные (ГТ) установки, в которых вместо паровых применяются газовые турбины, что снимает проблему водоснабжения (на Краснодарской и Шатурской ГРЭС);

парогазотурбинные (ПГУ), где тепло отработавших газов используется для подогрева воды и получения пара низкого давления (на Невинномысской и Кармановской ГРЭС);

магнитогидродинамические генераторы (МГД-генераторы), которые преобразуют тепло непосредственно в электрическую энергию (на ТЭЦ-21 Мосэнерго и Рязанской ГРЭС).

В России мощные (2 млн. кВт и более) построены в Центральном районе, в Поволжье, на Урале и в Восточной Сибири.

На базе Канско-Ачинского бассейна создается мощный топливно-энергетический комплекс (КАТЭК). В проекте предусмотрено строительство восьми ГРЭС мощностью по 6,4 млн. кВт. В 1989 г. был введен в строй первый агрегат Березовской ГРЭС-1 (0,8 млн. кВт).

Тепловые конденсационные электрические станции (КЭС)

Назначение конденсационных электростанций (КЭС)

В российских энергосистемах на тепловых КЭС вырабатывается две трети всей электроэнергии. Мощность отдельных станций достигает 6000 МВт и более. На новых КЭС устанавливают экономичные паротурбинные агрегаты, рассчитанные на работу в базисной части суточного графика нагрузки энергосистемы с продолжительностью использования установленной мощности 5000 часов в год и более.

Тепловые конденсационные станции с такими мощными агрегатами по технико-экономическим соображениям выполняют из нескольких автономных частей - блоков. Каждый блок (см. рис) состоит из парогенератора, турбины, электрического генератора, повышающего трансформатора. Внутри одной станции поперечные связи между тепломеханическими узлами блоков отсутствуют (паропроводы, водопроводы), т.к. это приведет к ухудшению показателей надежности. Отсутствуют также поперечные электрические связи генераторного напряжения, т.к. возможны слишком высокие токи короткого замыкания. Связь отдельных блоков возможна только на сборных шинах высшего и среднего напряжений.

КЭС обычно строят вблизи мест добычи топлива, транспортировка которого на большие расстояния экономически невыгодна. Однако, в последнее время ведется строительство КЭС, работающих на природном газе, который можно транспортировать по газопроводам на значительные расстояния. Для строительства КЭС важным условием является наличие поблизости водоема или источника водоснабжения.

КПД КЭС не превышает 32-40%.

К минусам конденсационных электростанций можно отнести недостаточную маневренность. Подготовка к пуску, синхронизация, набор нагрузки блока требуют значительного времени. Поэтому для КЭС желателен режим работы с равномерной нагрузкой, которая меняется в пределах от технического минимума до номинальной мощности.

Еще один минус - выбросы в атмосферу окислов серы и азота, углекислого газа, что приводит к загрязнению окружающей среды и созданию парникового эффекта. Парниковый эффект может привести к известным последствиям - таяние ледников, повышение уровня мирового океана, затоплению океанского побережья и изменению в климате.

Теплоэлектроцентрали (ТЭЦ)

Назначение теплоэлектроцентралей. Принципиальная схема ТЭЦ

ТЭЦ (теплоэлектроцентрали) - предназначены для централизованного снабжения потребителей теплом и электроэнергией. Их отличие от КЭС в том, что они используют тепло отработавшего в турбинах пара для нужд производства, отопления, вентиляции и горячего водоснабжения. Из-за такого совмещения выработки электроэнергии и тепла достигается значительная экономия топлива в сравнении с раздельным энергоснабжением (выработкой электроэнергии на КЭС и тепловой энергии на местных котельных). Благодаря такому способу комбинированного производства, на ТЭЦ достигается достаточно высокий КПД, доходящий до 70%. Поэтому ТЭЦ получили широкое распространение в районах и городах с высоким потреблением тепла. Максимальная мощность ТЭЦ меньше, чем КЭС.

ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет приблизительно 15 км. Загородные ТЭЦ передают горячую воду при более высокой начальной температуре на расстояние до 30 км. Пар для производственных нужд давлением 0.8-1.6 МПа может быть передан на расстояние не более 2-3 км. При средней плотности тепловой нагрузки мощность ТЭЦ обычно не превышает 300-500 МВт. Только в крупных городах, таких как Москва или Санкт-Петербург с большой плотностью тепловой нагрузки имеет смысл строить станции мощностью до 1000-1500 МВт.

Мощность ТЭЦ и тип турбогенератора выбирают в соответствии с потребностями в тепле и параметрами пара, используемого в производственных процессах и для отопления. Наибольшее применение получили турбины с одним и двумя регулируемыми отборами пара и конденсаторами (см. рис). Регулируемые отборы позволяют регулировать выработку тепла и электроэнергии.

Режим ТЭЦ - суточный и сезонный - определяется в основном потреблением тепла. Станция работает наиболее экономично, если ее электрическая мощность соответствует отпуску тепла. При этом в конденсаторы поступает минимальное количество пара. Зимой, когда спрос на тепло максимален, при расчетной температуре воздуха в часы работы промпредприятий нагрузка генераторов ТЭЦ близка к номинальной. В периоды, когда потребление тепла мало, например летом, а также зимой при температуре воздуха выше расчетной и в ночные часы электрическая мощность ТЭЦ, соответствующая потреблению тепла, уменьшается. Если энергосистема нуждается в электрической мощности, ТЭЦ должна перейти в смешанный режим, при котором увеличивается поступление пара в части низкого давления турбин и в конденсаторы. Экономичность электростанции при этом снижается.

Максимальная выработка электроэнергии теплофикационными станциями "на тепловом потреблении" возможна только при совместной работе с мощными КЭС и ГЭС, принимающими на себя значительную часть нагрузки в часы снижения потребления тепла.

Мини ТЭЦ (малая теплоэлектроцентраль)

Описание Мини ТЭЦ

Мини-ТЭЦ(ТЭС) – компактная энергетическая установка на базе поршневого двигателя внутреннего сгорания, работающая на природном газе и вырабатывающая одновременно тепловую и электрическую энергию.

Мини-ТЭЦ предназначены для комбинированного производства электрической энергии переменного тока и тепловой энергии в виде горячей воды или пара.

Использование этого оборудования позволяет потребителю стать независимым от перебоев электроэнергии или ее нехватки, одновременно получая автономное теплообеспечение. С учетом тенденции ежегодного роста стоимости электрической энергии применение когенератора дает значительный экономический эффект.

Мини-ТЭЦ(ТЭС) может располагаться вне здания или внутри, за счёт чего имеет несколько вариантов исполнения: базовое, открытое (без кожуха шумоглушения), в кожухе или в контейнере.

Мини-ТЭЦ(ТЭС) возможно устанавливать на любых новых строящихся объектах: промышленных производствах, торговых комплексах, офисных центрах, жилых микрорайонах и котеджных посёлках.

В настоящее время нашли широкое применение в зарубежной и отечественной теплоэнергетике следующие установки: противодавленческие паровые турбины, конденсационные паровые турбины с отбором пара,газотурбинные установки с водяной или паровой утилизацией тепловой энергии, газопоршневые, газодизельные и дизельные агрегаты с утилизацией тепловой энергии различных систем этих агрегатов.

Термин когенерационные установки используется в качестве синонима терминов мини-ТЭЦ и ТЭЦ, однако он является более широким по значению, так как предполагает совместное производство (co — совместное, generation — производство) различных продуктов, которыми могут быть, как электрическая и тепловая энергия, так и другие продукты, например, тепловая энергия и углекислый газ, электрическая энергия и холод и т.д.

Отличительной особенностью мини-ТЭЦ является более экономичное использование топлива для произведенных видов энергии в сравнении с общепринятыми раздельными способами их производства. Это связано с тем, что электроэнергия в масштабах страны производится в основном в конденсационных циклах ТЭС и АЭС, имеющих электрический КПД на уровне 30-35% при отсутствии теплового потребителя. Фактически такое положение дел определяется сложившимся соотношением электрических и тепловых нагрузок населенных пунктов, их различным характером изменения в течение года, а также невозможностью передавать тепловую энергию на большие расстояния в отличие от электрической энергии.

Достоинства, топливо, варианты размещения мини-ТЭЦ. Принципиальная схема

Достоинствами мини-ТЭЦ являются:

Комбинирование процесса производства электроэнергии и тепла;

Низкая стоимость единицы тепловой и электрической мощности;

Качество и бесперебойность энергоснабжения;

Соответствие европейским экологическим стандартам;

Низкий срок окупаемости и большой ресурс энергоблока;

Непосредственная близость к конечному потребителю и связанное с этим отсутствие затрат на сооружение коммуникаций и неизбежных потерь при передаче энергии по сетям;

Позволяет избежать затрат на строительство дорогостоящих высоковольтных линий электропередач (ЛЭП);

Компактность установок мини-ТЭЦ;

Оперативность ввода в эксплуатацию мини-ТЭЦ;

Оптимальное соответствие режиму многократного пуска и остановки;

Низкая себестоимость производимой энергии мини ТЭЦ;

Низкие сроки окупаемости оборудования;

Простота и удобство в эксплуатации – весь процесс управления работой станции полностью автоматизирован;

Высокая надежность основных узлов и агрегатов.





Дата публикования: 2015-02-18; Прочитано: 609 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...