Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Структура белков



АК являются мономерными структурными единицами белковой молекулы из которых сложена полипептидная цепь. АК могут находиться в двух стерических формах: L- и D-. Эти формы зеркально симметричны. В них массивный боковой радикал R и Н-атом, стоящие при α-углероде меняются местами. Этих форм нет только у глицина, боковая цепь которого состоит из Н-атома. Боковые цепи сложены из остатков L- аминокислот, только они кодируются генами. D-остатки не кодируются при матричном синтезе белка, а синтезируются специальными ферментами. Рецемизация (переход L- в D-) при биосинтезе, а также спонтанно в белках практически не происходит, но часто встречается при химическом синтезе пептидов.

Белковая молекула характеризуется наличием прочных ковалентных и относительно слабых нековалентных связей. Такое сочетание ковалентных и нековалентных связей обеспечивает белковой молекуле определенную прочность и динамичность в процессе функ­ционирования (рис.1).

а – электроста­тическое взаимодействие; б – водородные связи; в – взаимодействие неполярных боковых цепей, вызванное выталкиванием гидрофобных радикалов в «сухую» зону молекулами растворителя; г – дисульфидные связи (двойная изогнутая линия обозначает хребет полипептид­ной связи).

Рисунок 1 – Типы связей в белковой молекуле (по Филипповичу).

Ковалентные связи в молекуле белка могут быть двух типов – пеп­тидные и дисульфидные. АК в белковой цепи связаны между собой пептидными связями С и N атомов. Пептидная, или кислотноамидная связь (—СО—NH—), является типичной ковалентной связью. Пептид­ная связь возникает при взаимодействии карбоксильной группы одной АК и аминогруппы другой. Свободные амино- и карбоксильные группы образованного дипептида способны вновь вступать в реакцию поликонденсации с новыми молекулами АК, с образованием высокомолекулярного соединения. Таким образом, с помощью пептидной связи аминокислотные остатки соединяются друг с другом, образуя регулярный остов белковой молекулы, от которого отходят разнообразные боковые группы (R1 …RМ). Число звеньев боковой цепи (М) кодируется геном и составляет от нескольких десятков до многих тысяч. В процес­се биосинтеза белка происходит соединение остатков отдельных амино­кислот друг с другом в линейную последовательность:

—NH—CH—CO—NH—CH—CO— …—NH—CH—CO—

| | |

R1 R2 RМ

Соединения, которые об­разуются в результате кон­денсации нескольких АК, получили название пептидов (ди-, три-, тетрапептиды и т. д.). В состав пептидов могут входить не только протеиногенные, но и непротеиногенные АК. Пептиды играют важную роль промежуточных продуктов в обмене веществ, и многие из них яв­ляются физиологически очень активными соеди­нениями. Пептидами являются некоторые антибио­тики (грамицидин, лихениформин), гормоны (ин­сулин, окситацин, вазопрессин), токсины (аманитины). Пептиды могут представлять собой замкнутую полипептидную цепочку, т. е. являться циклопептидами, а некоторые даже имеют би­циклическое строение. Среди циклопептидов есть сильно токсичные вещества (ядовитый гриб бледная по­ганка (Amanita phalloides).

Названия пептидов определяются наименованиями входящих в его состав АК, перечисляемых последовательно, начиная с N-конца, причем суффикс -ин- в названиях всех АК, за исклю­чением С-концевой, имеющей свободную СООН-группу (карбоксильную), заменяется на суффикс -ил. Например, если в образовании три пептида принимают участие две молекулы аланина и одна молекула глицина, трипептид называют аланилаланилглицином или алаалагли. Сокращенно амино­кислоты обозначают трехбуквенными символами (таблица 1).

Таблица 1 – Сокращенные обозначения аминокислот

Аминокислота Сокращенное обозначение Аминокислота Сокращенное обозначение
Аланин Ала Лейцин Лей
Аргинин Арг Лизин Лиз
Аспарагин Асн Метионин Мет
Аспарагиновая к-та Асп Фенилаланин Фен
Цистеин Цис Пролин Про
Глутамин Глн Серии Сер
Глутаминовая к-та Глу Треонин Тре
Глицин Гли Триптофан Три
Гистидин Гис Тирозин Тир
Изолейцин Иле Валин Вал

Важную роль в стабилизации пространственной структуры белковой молекулы играют ковалентные дисульфидные связи(—S—S—), которые образуются в результате окис­ления сульфгидрильных групп остатков цистеина. Дисульфидные связи могут образовываться между остатками цис­теина двух полипептидных цепей или двумя остатками цистеина одной полипептидной цепи, стабилизируя при этом определенную конформацию белковой молекулы. В стабилизации конформации белковой молекулы существенную роль играют нековалентные связи и взаимодействия. К ним относятся гидрофобные, электростатические, ионные взаимодействия, а также водородные связи. Они поддерживают пространственное строение белка значительно слабее химических связей, фиксирующих последовательность мономеров (АК) в белковой цепи.

Гидрофобное взаимодействие возникает при сбли­жении гидрофобных углеводородных и ароматических радикалов не­которых аминокислот (аланина, валина, лейцина, изолейцина, фенилаланина и триптофана). Процесс гидрофобного взаимодействия можно представить как перемещение неполярных групп полипептидной цепи (метильной —СН3, этильной —С2Н5, фенильной —С6Н6) из воды в гидрофобные области, образуемые за счет ассоциации этих групп. Вследствие такого перемещения неполярные группы сказываются в непосредственной близости друг от друга во внутренней части молеку­лы, а гидрофильные группы размещаются на поверхности и контакти­руют с водой.

Водородные связи образуются между атомами водорода, ковалентно соединенными с атомом, содержащим неподеленную электронную пару, или другим электроотрицательным атомом. В биологических структурах водородная связь чаще всего обра­зуется за счет атома водорода, связанного с кислородом или азотом. Водородные связи могут быть внутри- и межцепочечными. Внутрицепочечные водородные связи стабилизи­руют α-спиральные, а межцепочечные – β-складчатые структуры.

Ионные (солевые) связи. Они, предположительно, образуются между диссоциированными свободными карбоксильными группами (СОО) моноаминодикарбоновых аминокислот (глутаминовой и аспарагиновой) и протонированными свободными аминогруппами (NH3+) диамино-монокарбоновых аминокислот. Ионные связи могут быть внутри- и межцепочечными.

Уровни структурной организации молекулы белка. Функциональ­ные свойства белков определяются последовательностью АК и их пространст­венной структурой. С этой точки зрения выделяют четыре уровня: первичная, вторичная, третичная и четвертичная структуры.

Под первичной структурой понимают качественный и количественный состав АК, а также их последовательность расположения в полипептидных цепях белковой молекулы. Молекула белка может иметь одну или несколько полипептидных цепей. Например, молекула фермента рибонуклеазы представляет одну поли­пептидную цепь, имеющую восемь остатков цистеина, образующих четыре внутримолеку­лярные дисульфидные связи. Гормон инсулин состоит из двух поли­пептидных цепей, связанных дисульфидными мостиками между остат­ками цистеина.

Вторичная структура показывает пространственную конфигура­цию белковой молекулы. Выделяют три типа вторичной структуры: α-спиральная, β-складчатая и коллагеновая спираль.

В стабилизации вторичной структуры важную роль играют водород­ные связи, которые возникают между атомом водорода, соединенным с электроотрицательным атомом азота одной пептидной связи, и кар­бонильным атомом кислорода четвертой по счету от нее аминокислоты, и направлены они вдоль оси спирали. Энергетические расчеты показы­вают, что более эффективна правая α-спираль (рис. 2). Фибриллярные α-кератины (шерсть, кожа, перья) состоят из не­скольких полипептидных цепей, имеющих правую α-спиральную кон­фигурацию, и образуют прочные суперспирали, выполняющие меха­нические функции.

Рисунок 2 – α-спиральная кон­фигурация структуры белка

Другой тип вторичной структуры белка, получил название β-складчатой структуры или β-складчатого слоя. На рис. 3 показана модель такой структуры (а – вид сбоку, б – вид сверху). Точками на рисунке показаны меж­цепочечные водород-

Рисунок 3 – β-складчатая кон­фигурация структуры белка

ные связи. При таком пространственном располо­жении образуется система па­раллельно и антипараллельно размещенных фрагментов одной или нескольких полипептидных цепей. Полипептидные цепи в раскладках полностью вытянуты. Складки появляются из-за того, что плоскости двух соседних пептидных связей образуют некоторый угол. Система стабилизируется благодаря поперечным водородным связям между це­пями, расположенными перпендикулярно по отношению к ориентации полипептидных связей. Расстояние между цепями составляет 0,95 нм, а период идентичности вдоль цепи – 0,70 нм для параллельных цепей и 0,65 нм для антипараллельных. Указанная структура характерна для фибриллярных белков (β-кератин, фиброин и др.). В частности, β-кератин характеризуется параллельным расположением полипептидных цепей, которые дополнительно стабилизируются межцепочечными S—S-связями. В фиброине шелка соседние полипептидные цепи антипараллельны.

Третий тип вторичной структуры — коллагеновая спираль. Она состоит из трех спирализованных цепей, имеющих форму стержня диаметром 1,5 нм и длиной около 300 нм. Спирализованные цепи закручиваются одна вокруг другой и образуют суперспираль. Расстояние между двумя АК остатками по оси спирали составляет 0,29 нм, а на один виток спирали приходится 3,3 остатка. Коллагеновая спираль стабилизируется водородными связями, возни­кающими между водородом пептидных NH-групп остатков АК одной цепи и кислородом СО-групп АК остатков дру­гой цепи. Такая структура придает белку высокую упругость и прочность.

Третичная структура. Большинство белков в нативном состоянии имеют весьма компактную структуру, которая определяется размером, формой, полярностью АК радикалов, а также последова­тельностью АК (рис. 4). Образование нативной глобулярной структуры является многокомпонентным процессом, основанным на различных типах нековалентных взаимодействий. Превращение развернутой полипептидной цепи в компактную моле­кулу сопровождается гидрофобными взаимодействиями углеводород­ных радикалов таких АК, как лейцин, изолейцин, фенилаланин, триптофан, достаточно удаленных друг от друга в полипептидной цепи. Почти все неполярные или гидрофобные радикалы этих АК располагаются внутри глобулы и обеспечивают устойчивость ее структуры. Полярные или ионогенные радикалы (особенно аспарагиновой и глутаминовой кислот, аргинина и лизина) располагаются на внешней поверхности молекулы и находятся в гидратированном состоя­нии. В местах сгибов полипептидной цепи локализованы остатки таких АК, как пролин, изолейцин и серии, которые не способны образовывать α-спиральные структуры. Таким образом, между после­довательностью АК в белке и его конформацией существует тесная взаимосвязь. Различия в аминокислотном составе и в последова­тельности отдельных АК остатков обусловливают возникновение в полипептидной цепи локальных неустойчивых точек, в ко­торых стабильность α-спирали нарушена и под действием разнообраз­ных молекулярных сил могут создаваться изгибы.

Рисунок 4 – Третичная структура белка

Существенное влияние на процесс формирования нативной конформации белка или его третичной структуры оказывают гидрофобные и ионогенные взаимодействия, водородные связи и др. Под действием этих сил достигается термодинамически целесообразная конформация белковой молекулы и ее стабилизация. После завершения процесса свертывания полипептидной цепи важную роль в стабилизации ее конформации играют ковалентные дисульфидные связи.

В настоящее время расшифрована третичная структура миоглобина, гемоглобина, РНК-азы, лизоцима, химотрипсина, карбоксипептидазы и других белков.

Под четвертичной структурой подразумевается характерный способ объединения и расположения в пространстве отдель­ных полипептидных цепей, составляющих одну функционально инди­видуальную молекулу. По составу и сложности первичной, вторичной и третичной структуры субъединицы могут сильно отличаться. Напри­мер, молекула гемоглобина состоит из четырех субъединиц, которые объединены в мультимер с молекулярной массой 60000-70000, РНК-полимераза из Е. coli имеет пять субъединиц, а белок ви­руса табачной мозаики содержит несколько тысяч одинаковых субъ­единиц с молекулярной массой около 17500 каждая. В формировании четвертичной структуры принимают участие водородные связи, элек­тростатические, Ван-дер-Ваальсовы и гидрофобные взаимодействия.

Для четвертичной структуры одних белков характерно глобулярное расположение субъединиц (гемоглобин), другие белки объединяются в спиральные четвертичные структуры по типу винтовой симметрии (вирус табачной мозаики). Четвертичная структура установлена для гемоглобина, вируса та­бачной мозаики, РНК-полимеразы, лактатдегидрогеназы, каталазы, аспартат-карбомоилазы и др.





Дата публикования: 2015-02-17; Прочитано: 2759 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...