Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Сравнение бесконечно малых. Пусть и — бесконечно малые при



Пусть и — бесконечно малые при . 1. Если , то говорят, что является бесконечно малой высшего порядка по сравнению с . В этом случае пишут . 2. Если , где —число, отличное от нуля, то говорят, что и бесконечно малые одного и того же порядка. В часности, если , то бесконечно малые и называются эквивалентными. Запись ~ означает, что и —эквивалентные бесконечно малые. Если , то это означает, что . Таким образом, является бесконечно малой высшего порядка по сравнению с , т. е. 3. Если и —бесконечно малые одного и того же порядка, причем , то говорят, что бесконечно малая имеет порядок по сравнению с . Отметим некоторые свойства бесконечно малых величин: 1o. Произведение двух бесконечно малых есть бесконечно малая высшего порядка по сравнению с сомножителями, т. е. если , то и . 2o. Бесконечно малые и эквивалентны тогда и только тогда, когда их разность является бесконечно малой высшего порядка по сравнению с и , т. е. если , . 3o. Если отношение двух бесконечно малых имеет предел, то этот предел не изменится при замене каждой из бесконечно малых эквивалентной ей бесконечно малой, т.е. если , ~ , ~ , то . Полезно иметь в виду эквивалентность следующих бесконечно малых величин: если , то ~ ~ ~ ~ ~ ~ ~



Дата публикования: 2015-03-26; Прочитано: 142 | Нарушение авторского права страницы



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...