Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Интегрирование функции на ограниченном множестве



Двойной интеграл от функции , подобно определенному интегралу, определяется при помощи интегральных сумм функции . Интегральные суммы функции определялись на отрезке . Естественным обобщением отрезка в пространстве является замкнутая и ограниченная область .

Пусть на множестве определена ограниченная функция . Рассмотрим разбиение области некоторыми кривыми на частичных областей , (рис.15.4). Диаметром области назовем наибольшее расстояние между точками этой области, а размером разбиения назовем наибольший среди диаметров частичных областей: .

В каждой частичной области , площадь которой обозначим символом , выберем точку .

$$15.4

Определение 15.13. Сумма называется интегральной суммой функции на области .

Значение числа зависит как от выбора разбиения , так и от выбора точек .

Определение 15.14. Последовательность разбиений области называется правильной, если . Числовая последовательность называется последовательностью интегральных сумм, если последовательность разбиений является правильной, а на выбор точек не накладывается никаких ограничений.

Определение 15.15. Число называется пределом интегральных сумм ограниченной функции на области , если каждая последовательность интегральных сумм сходится к точке . Этот предел обозначают символом .

Так как определение предела интегральных сумм сформулировано в терминах пределов последовательности, то это позволяет перенести основные результаты теории пределов на этот новый вид предела.

Определение 15.16. Число называется двойныминтегралом функции

на области , его обозначают символом , функция называется интегрируемой на области .

Из этого определение следует, что

.

Замечание. Функция , непрерывная на замкнутом и ограниченном множестве, интегрируема на этом множестве. ▲





Дата публикования: 2015-01-23; Прочитано: 227 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...