Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Клинкер, его химический и минеральный состав



 

Портландцемеитный клинкер обычно получают в виде спекшихся мелких и более крупных гранул и кусков размером до 10—20 или до 50—60 мм в зависимости от типа печи.

По микроструктуре клинкер, получаемый спеканием, представляет собой сложную тонкозернистую смесь многих кристаллических фаз и небольшого количества стекловидной фазы.

Химический состав клинкера колеблется в сравнительно широких пределах. Главные оксиды цементного клинкера — оксид кальция СаО, двуоксид кремния Si02, оксиды алюминия А1203, железа Fe203, суммарное содержание которых 95—97%. Кроме них в состав клинкера в виде различных соединений в небольших количествах могут входить оксид магния MgO, серный ангидрид S03, двуоксид титана Ti02, оксиды хрома Сг203, марганца МгьОа, щелочи Na20 и К20, фосфорный ангидрид Р205 и др.

Повышенное содержание оксида кальция (при условии обязательного связывания в химические соединения с кислотными оксидами) обусловливает обычно повышенную скорость твердения портландцемента, его высокую конечную прочность, но несколько пониженную водостойкость. Цементы с повышенным содержанием кремнезема в составе клинкерной части характеризуются пониженной скоростью твердения в начальные сроки при достаточно интенсивном нарастании прочности в длительные сроки. Они отличаются повышенной водо- и сульфато-стойкостыо.

При повышенном содержании А1203, а следовательно, и алюминатов цементы приобретают способность к ускоренному твердению в начальные сроки. Повышение количества глинозема придает цементам меньшую водо-, сульфато- и морозостойкость.

Соединения оксида железа способствуют снижению температуры спекания клинкера. Цементы, богатые Fe203, при низком содержании глинозема ведут себя аналогично высококремнеземистым. Относительно медленно схватываясь и твердея в начальные сроки, они в дальнейшем достигают высокой прочности. Цементы с повышенным количеством оксида железа отличаются высокой стойкостью к действию сульфатных вод.

Повышенное содержание в клинкере MgO вызывает неравномерность изменения объема цемента при твердении. По ГОСТ 10178—76 (с изм.), MgO в клинкере должно. быть не больше 5 °/о.

 

Ангидрид серной кислоты S03 в виде гипса необходим для регулирования сроков схватывания портландцемента, его содержание ограничивается пределами 1,5— 3,5 %• Более высокое содержание S03 может вызвать неравномерное изменение объема цемента вследствие образования гидротрисульфоалюмината кальция.

Двуоксид титана Ti02 входит в клинкер с глинистым компонентом сырьевой смеси в количестве ОД—0,5 %, что способствует лучшей кристаллизации клинкерных минералов. При содержании 2—4 % ТЮ'г, замещая часть кремнезема, способствует повышению прочности цемента, а при большем содержании снижает ее. Количество Мп20з в клинкере обычно не превышает 1—2 % и существенно не влияет на физико-механические свойства цемента.

Фосфорный ангидрид Р205 и оксид хрома Сг203 в небольшом количестве (ОД—0,3%) оказывают легирующее действие на клинкер, увеличивая интенсивность твердения цемента в первые сроки и повышая его конечную прочность. При большем их количестве (1—2%) скорость твердения цементов замедляется, а прочность снижается.

Щелочи K20-f-Na20 обычно присутствуют в клинкерах в количестве до 0,5—1 %, причем содержание К20, как правило, в несколько раз больше, чем Na20. Если щелочей более 1 %, то они вызывают непостоянство сроков схватывания цемента и образование выцветов на поверхности растворов или бетонов. Щелочные соединения могут явиться также причиной опасных деформаций в гидротехнических бетонах на заполнителях, содержащих кремнистые сланцы, опаловидные и другие аморфные видоизменения кремнезема. Для изготовления таких бетонов рекомендуется применять цементы, содержащие не более 0,6% щелочей (в пересчете на оксид натрия). В клинкерах заводского изготовления при химическом анализе может обнаружиться так называемый нерастворимый (в НС1) остаток, который состоит обычно из кварцевых частичек, не вступивших в реакцию с СаО во вре-' мя обжига.

Прокаливанием проб цементов при 1000—1200 °С в процессе химического анализа определяют п. п. п. Они имеют большее практическое значение для характеристики готового портландцемента, чем клинкера, так как свидетельствуют о сроке хранения вяжущего, вызвавшем частичную гидратацию клинкерных минералов и переход свободного СаО в Са(ОН)2. Минеральный состав клинкера, В клинкере обычного состава главные оксиды образуют силикаты, алюминаты и алю-моферриты кальция в виде минералов кристаллической структуры, часть их входит в стекловидную фазу.

Рассмотрение шлифов цементного клинкера под микроскопом (20) показывает, что он состоит преимущественно из кристаллов минералов-силикатов, между которыми размещается так называемое промежуточное вещество. Последнее включает алюминаты и алюмофер-риты кальция в кристаллическом виде, а также стекловидную фазу.

Основными минералами цементного клинкера являются алит ЗСаО-SiO или C3S и белит 2CaO-Si02 или C2S*.

·

· Природные каменные материалы

Быстротвердеющий портландцемент (БТЦ) — портландцемент с минеральными добавками, отличающийся повышенной прочностью через 3 сут твердения. Его выпускают М400 и 500. БТЦ обладает более интенсивным, чем обычный, нарастанием прочности в начальный период твердения. Это достигается путем более тонкого помола цемента (до удельной поверхности 3500... 4000 см2/г), а также повышенным содержанием трехкальциевого силиката и трехкальциевого алюмината (60...65%). В остальном свойства его не отличаются от свойств портландцемента. БТЦ применяют в производстве железобетонных конструкций, а также при зимних бетонных работах. Ввиду повышенного тепловыделения его не следует использовать в массивных конструкциях.

Сульфатостойкий портландцемент применяют для получения бетонов, работающих в минерализованных и пресных водах. Его получают из клинкера нормированного минералогического состава. Содержание C3S не более 50%, С3А не более 5%. Введение инертных и активных минеральных добавок не допускается. Этот цемент, являясь по существу белитовым, обладает несколько замедленным твердением в начальные сроки и низким тепловыделением. Сульфатостойкий портландцемент выпускают М400. Остальные требования к нему предъявляются такие же, как и к портландцементу. Сульфатостойкий портландцемент используют для получения бетонов, находящихся в минерализованных и пресных водах.

Сульфатостойкий портландцемент с минеральными добавками выпускают М400 и 500. В качестве минеральной добавки вводят 10...20% от массы цемента гранулированный доменный шлак или электротермофосфорный шлак или 5... 10% активных минеральных добавок осадочного происхождения (кроме глиежа). Клинкер для производства этого цемента не должен содержать соответственно более 5% С3А и MgO, а сумма С3А и C4AF не должна превышать 22%.

Сульфатостойкий шлакопортландцемент выпускают М300 и 400. Его получают путем совместного тонкого помола клинкера и гранулированного доменного шлака в количестве 21...60% и небольшого количества гипса. В этом цементе содержание в клинкере С3А ограничивается до 8%, MgO — до 5%.

Пуццолановый портландцемент выпускают М300 и 400. Его получают путем совместного помола клинкера и 25...40% от массы цемента активных минеральных добавок и гипсового камня. Клинкер для пуццоланового цемента не должен содержать более 8% С3А и не более 5% MgO. В остальном свойства его не отличаются от свойств портландцемента.

Пластифицированный портландцемент отличается от обыкновенного содержанием поверхностно-активной пластифицирующей добавки. СДБ в количестве до 0,25% (в расчете на сухое вещество) повышает подвижность и удобоукладываемость бетонной смеси и придает затвердевшим бетонам высокую морозостойкость. В качестве пластифицирующих добавок применяют СДБ, которую можно вводить как при помоле цемента, так и непосредственно в бетонную смесь во время ее приготовления. Молекулы СДБ образуют вокруг цементных зерен водные оболочки, выполняющие роль гидродинамической смазки, уменьшающей трение между зернами, благодаря чему повышается пластичность цементного теста. За счет пластифицирующего действия добавки появляется возможность снижения В/Ц в бетоне на 5...10%. Если же сохранить В/Ц, то можно снизить расход цемента (примерно на 10... 18%) без ухудшения качества бетона.

Внедрение пластифицирующих добавок не приводит к созданию новых видов цемента, а лишь придает исходному дополнительные свойства (более высокую пластичность). Поэтому пластифированные цементы могут применяться наряду с обыкновенный, обеспечивая получение более удобоукладываемых бетонных смесей и морозостойких бетонов.

Гидрофобный портландцемент отличается от обыкновенного держанием поверхностно-активной гидрофобизующей добавки: мылонафта, асидола, асидол-мылонафта, олеиновой кислоты или окислительного петролатума, нафтеновой кислоты и ее соли, синтетических жирных кислот и их кубовых остатков, кремнийорганических полимеров и др. Эти вещества вводят в количестве 0,1...0,2% от массы цемента в расчете на сухое вещество добавки. Гидрофобизующие добавки образуют на зернах цемента тонкие (мономолекулярные) пленки, уменьшающие способность цемента смачиваться водой. Такой цемент, находясь во влажных условиях, сохраняет активность и не комкуется. В то же время в процессе перемешивания бетонной смеси адсорбционные пленки сдираются с поверхности цементных зерен и не препятствуют нормальному твердению цемента. В процессе приготовления бетонов некоторые гидрофобизующие добавки вовлекают в бетонную смесь большое количество мельчайших пузырьков воздуха — до 30...50 л на 1 м3 бетонной смеси (3...5% по объему). Вовлеченный воздух или, если нет добавочного воздухововлечения, адсорбционные слои, активные в смазочном отношении, улучшают подвижность и удобоукладываемость смеси, а наличие в отвердевшем бетоне мельчайших замкнутых пустот способствует повышению морозостойкости бетона. Гидрофобный цемент отличается и более высокими водостойкостью и водонепроницаемостью.

· 39

·

· 40

Железобетон представляет собой строительный материал, в котором выгодно сочетается совместная работа бетона и стали крайне отличающихся своими механическими свойствами. Бетон, как и всякий каменный материал, хорошо сопротивляется сжимающим нагрузкам, но он хрупок и слабо противодействует растягивающим напряжениям.

Прочность бетона при растяжении примерно в 10...15 раз меньше прочности при сжатии. В результате этого бетон невыгодно использовать для изготовления конструкций, в которых возникают растягивающие напряжения. Сталь же, обладая очень высоким пределом прочности при растяжении, способна воспринимать растягивающие напряжения, возникающие в железобетонном элементе.

Для строительства элементов, подверженных изгибу, целесообразно применять железобетон. При работе таких элементов возникают напряжения двух видов: растягивающие и сжимающие. При этом сталь воспринимает первые напряжения, а бетон — вторые и железобетонный элемент в целом успешно противостоит изгибающим нагрузкам. Таким образом сочетается работа бетона и стали в одном материале — железобетоне.

Возможность совместной работы в железобетоне двух резко различных по своим свойствам материалов определяется следующими важнейшими факторами: прочным сцеплением бетона со стальной арматурой, вследствие этого при возникновении напряжения в железобетонной конструкции оба материала работают совместно; почти одинаковым коэффициентом температурного расширения стали и бетона, чем обеспечивается полная монолитность железобетона; бетон не только не оказывает разрушающего влияния на заключенную в нем сталь, но и предохраняет ее от коррозии.

В зависимости от способа армирования и состояния арматуры различают железобетонные изделия с обычным армированием и предварительно напряженные.

· В основу классификации сборных железобетонных изделий положены следующие признаки: вид армирования, плотность, вид бетона, внутреннее строение и назначение. По виду армирования железобетонные изделия делят на предварительно напряженные и с обычным армированием.

· По плотности изделия бывают из тяжелых бетонов, облегченного, легкого и из особо легких (теплоизоляционных) бетонов. Для элементов каркаса зданий применяют тяжелый бетон, а для ограждающих конструкций зданий — легкий.

· По виду бетонов и применяемых в бетоне вяжущих различают изделия: из цементных бетонов — тяжелых на обычных плотных заполнителях и легких бетонов на пористых заполнителях: силикатных бетонов автоклавного твердения — плотных (тяжелых) или легких на пористых заполнителях на основе извести или смешанном вяжущем; ячеистых бетонов — на цементе, извести или смешанном вяжущем; специальных бетонов — жаростойких, химически стойких, декоративных, гидратных.

· По внутреннему строению изделия могут быть сплошными и пустотелыми, изготовленными из бетона одного вида, однослойные или двухслойные и многослойные, изготовленные из разных видов бетона или с применением различных материалов, например теплоизоляционных.

· Железобетонные изделия одного вида могут отличаться также типоразмерами, например стеновой блок угловой, подоконный и т. д. Изделия одного типоразмера могут подразделяться также по классам. В основу деления на классы положено различное армирование, наличие монтажных отверстий или различие в закладных деталях.

· В зависимости от назначения сборные железобетонные изде лия делят на основные группы: для жилых, общественных промышленных зданий, для сооружений сельскохозяйственного и гидротехнического строительства, а также изделий общего назначения.

·

· 41

· Состав бетонной смеси выражают в виде соотношения по массе (реже по объему) между количествами цемента, песка и щебня (или гравия) с указанием водоцементного отношения.

· Различают два состава бетона: номинальный (лабораторный), принимаемый для материалов в сухом состоянии, и производственный (полевой) — для материалов с естественной влажностью.

· Состав бетонной смеси, т. е. количество цемента, воды, песка и щебня (гравия), вначале устанавливают ориентировочно методом расчета, а затем уточняют испытанием пробных замесов бетонной смеси.

· Расчет состава бетона производят в следующем порядке - определяют цементно-водное отношение, обеспечивающее получение бетона заданной прочности и расход воды; рассчитывают потребный расход цемента, а затем щебня (или гравия) и песка - проверяют подвижность (жесткость) бетонной смеси при отклонениях этих показателей от проекта; производят корректирование состава бетонной смеси; приготовляют образцы для определения прочности и испытывают в заданные сроки; пересчитывают номинальный состав бетонной смеси на производственный.

· Определение расхода воды Количество воды для затвердения 1 м3 бетонной смеси для всех расчетов в соответствии с ОНТП 07—85 принимается равным 200 л независимо от вида, жесткости и подвижности бетонных смесей. Свойства строительных материалов





Дата публикования: 2015-01-26; Прочитано: 1810 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.016 с)...