Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Классическая схема интерференции и примеры ее реализации. Ширина интерференционной полосы



классические интерференционные схемы: зеркало Ллойда, бизеркала и бипризма Френеля. В этих схемах реализуется идея опыта Юнга: получить два когерентных источника для наблюдения интерференции путем деления пучка света, испускаемого одним источником, на два пучка.

Максимумы интерференции наблюдаются в тех точках, в которые интерферирующие волны приходят в одинаковой фазе, т.е. при d = 2pn, где n – целое число, положительное или отрицательное. Тогда разность хода равна:

D = nl.

Минимумы наблюдаются в тех точках, в которые волны приходят в противофазе. Для этих точек разность фаз , что соответствует разности хода

.

Для того чтобы максимумы и минимумы были более четкими, амплитуды складываемых колебаний должны быть равными. При наблюдении интерференции необходимо, чтобы разность хода волн была менее длины цуга. Иначе будут складываться колебания, создаваемые разными цугами, и условие когерентности выполняться не будет.

 

Рассмотрим схему Юнга. Источниками света в оригинальном опыте Юнга являлись две узкие щели, интерференция наблюдалась на удаленном экране. На рис. 1 S1 и S2 – источники света, S1М и S2М – расстояния от источников до точки наблюдения М. Проведем S1А перпендикулярно S2М. Треугольники S1S2А и ВМО подобны. В практически применяемых интерференционных схемах угол между интерферирующими лучами S1МS2 мал (порядка долей градуса), т.е. расстояние от источников до экрана гораздо больше расстояния между самими источниками. Поэтому S2А приближенно равна разности хода D = S2М - S1М.

Из подобия треугольников имеем: D /d» x/L, откуда

x = L D /d,

где х = ОМ – координата точки наблюдения на экране, d = S1S2 – расстояние между источниками, L = ВО – расстояние от источников до экрана.

Если в точке М наблюдается максимум, то разность хода лучей в этой точке равна целому числу длин волн. Тогда согласно (5) координаты точек максимумов равны (n – целое число: n = 0, ±1, ±2, ±3,…, называемое порядком интерференционного максимума). Между максимумами находятся минимумы. Расстояние между соседними максимумами и между соседними минимумами одинаково и равно

.

Если на пути одного из лучей, например, верхнего, поставить тонкую прозрачную пластинку с показателем преломления n и толщиной h, то между лучами возникнет дополнительная оптическая разность хода , т.к. один из лучей проходит путь h в воздухе, а второй это расстояние проходит в веществе пластинки. Вследствие этого вся интерференционная картина сместится в ту сторону, где находится пластина, т.е. в нашем примере вверх. Если дополнительная разность хода равна длине волны, то произойдет смещение на ширину одной интерференционной полосы. Если произошло смещение картины на N полос (N может быть и дробным), то дополнительная оптическая разность хода:

.

Эта формула позволяет, зная λ, определить как показатель преломления пластины (если известна толщина), так и ее толщину при известном показателе преломления.

Если в схеме Юнга через y обозначить смещение точки наблюдения от плоскости симметрии, то для случая, когда d << L и y << L (в оптических экспериментах эти условия обычно выполняются), можно приближенно получить:

При смещении вдоль координатной оси y на расстояние, равное ширине интерференционной полосы Δl, т. е. при смещении из одного интерференционного максимума в соседний, разность хода Δ изменяется на одну длину волны λ. Следовательно,

где ψ – угол схождения «лучей» в точке наблюдения P. Выполним количественную оценку. Допустим, что расстояние d между щелями S1 и S2 равно 1 мм, а расстояние от щелей до экрана Э составляет L = 1 м, тогда ψ = d / L = 0,001 рад. Для зеленого света (λ = 500 нм) получим Δl = λ / ψ = 5 · 105 нм = 0,5 мм. Для красного света (λ = 600 нм) Δl = 0,6 мм. Таким путем Юнг впервые измерил длины световых волн, хотя точность этих измерений была невелика.

Следует подчеркнуть, что в волновой оптике, в отличие от геометрической оптики, понятие луча света утрачивает физический смысл. Термин «луч» употребляется здесь для краткости для обозначения направления распространения волны. В дальнейшем этот термин будет употребляться без кавычек.

В эксперименте Ньютона (рис. 3.7.1) при нормальном падении волны на плоскую поверхность линзы разность хода приблизительно равна удвоенной толщине 2h воздушного промежутка между линзой и плоскостью. Для случая, когда радиус кривизны R линзы велик по сравнению с h, можно приближенно получить:

где r – смещение от оси симметрии. При написании выражения для разности хода следует также учесть, что волны 1 и 2 отражаются при разных условиях. Первая волна отражается от границы стекло–воздух, а вторая – от границы воздух–стекло. Во втором случае происходит изменение фазы колебаний отраженной волны на π, что эквивалентно увеличению разности хода на λ / 2. Поэтому

При r = 0, то есть в центре (точка соприкосновения) Δ = λ / 2; поэтому в центре колец Ньютона всегда наблюдается интерференционный минимум – темное пятно. Радиусы rm последующих темных колец определяются выражением

Эта формула позволяет экспериментально определить длину волны света λ, если известен радиус кривизны R линзы.





Дата публикования: 2015-01-25; Прочитано: 1716 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...