Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Строение ферментов. Номенклатура ферментов. Активный центр и его функциональные участки (каталитический и якорный). Простые и сложные ферменты



Важнейшим свойством ряда белков, как уже отмечено, является их каталитическая активность, теснейшим образом связанная с общими особенностями их структуры. Каталитически активные белки называют ферментами или энзимами. Исключительно высокая каталитическая активность, проявляемая в условиях нормальной температуры и давления, отличает биокатализаторы от неорганических катализаторов. Второе различие заключается в том, что ферменты обладают необыкновенно высокой специфичностью действия, чего не наблюдается у катализаторов неорганической природы. Каждый фермент каталитически ускоряет, как правило, одну-единственную химическую реакцию или в крайнем случае группу реакций одного типа. Скорость каждой ферментативной реакции регулируема, поэтому ферменты возникают в строго необходимых пропорциях. Наконец, ряд различий между биокатализаторами и неорганическими катализаторами связан с белковой природой ферментов. Сюда относятся термолабильность, зависимость активности от pH среды и наличия активаторов или ингибиторов и др. Будучи выделены из организма, ферменты не утрачивают каталитических свойств. На этом основано их практическое применение в химической, пищевой, легкой и фармацевтической промышленности.

По строению ферменты могут быть однокомпонентными, простыми белками, и двухкомпонентными, сложными белками. Во втором случае в составе фермента обнаруживается добавочная группа небелковой природы. Сложный фермент – холофермент. К простым относят все пищеварительные ферменты, к сложным – большую часть ферментов.

Добавочную группу, прочно связанную, не отделяемую от белковой части, называют простетической группой; в отличие от этого добавочную группу, легко отделяющуюся от апофермента и способную к самостоятельному существованию, обычно именуют коферментом.

Характерной особенностью двухкомпонентных ферментов является то, что ни белковая часть, ни добавочная группа в отдельности не обладают заметной каталитической активностью. Только их комплекс проявляет ферментативные свойства. При этом белок резко повышает каталитическую активность добавочной группы, присущую ей в свободном состоянии в очень малой степени; добавочная же группа стабилизирует белковую часть и делает ее менее уязвимой к денатурирующим агентам. Таким образом, хотя непосредственным исполнителем каталитической функции является простетическая группа, образующая каталитический центр, ее действие немыслимо без участия полипептидных фрагментов белковой части фермента. Более того, в апоферменте есть участок, характеризующийся специфической структурой, избирательно связывающий кофермент. Это так называемый кофермент связывающий домен; его структура у различных апоферментов, соединяющихся с одним и тем же коферментом, очень сходна. Таковы, например, пространственные структуры нуклеотидсвязывающих доменов ряда дегидрогеназ. Роль коферментов и выполняют большинство витаминов или соединения, построенные с участием витаминов. Функцию простетических груп выполняют нуклеотиды и их производные фосфорные эфиры некоторых моносахаридов и ряд других веществ.

Иначе обстоит дело у однокомпонентных ферментов, не имеющих добавочной группы, которая могла бы входить в непосредственный контакт с преобразуемым соединением. Эту функцию выполняет часть белковой молекулы, называемая каталитическим центром. Предполагают, что каталитический центр однокомпонентного фермента представляет собой уникальное сочетание нескольких аминокислотных остатков, располагающихся в определенной части белковой молекулы.

Кроме каталитического центра, образованного сочетанием аминокислотных радикалов или присоединением кофермента, у ферментов различают еще два центра: субстратный и аллостерический. Под субстратным центром понимают участок молекулы фермента, ответственный за присоединение вещества (субстрата), подвергающегося ферментативному превращению. Часто этот участок называют «якорной площадкой» фермента, где, как судно на якорь, становится субстрат. Во многих случаях прикрепление субстрата к ферменту идет за счет взаимодействия с с-аминогруппой радикала лиз, расположенного в субстратном центре. Эту же роль может выполнять СООН-группа глу, а также HS-группа цис. Однако работы последних лет показали, что гораздо большее значение здесь имеют силы гидрофобных взаимодействий и водородные связи, возникающие между радикалами аминокислотных остатков субстратного центра фермента и соответствующими группировками в молекуле субстрата. Понятие о каталитическом и субстратном центре не следует абсолютизировать. В реальных ферментах субстратный центр может совпадать (или перекрываться) с каталитическим центром. Более того, каталитический центр может окончательно сформироваться в момент присоединения субстрата. Поэтому часто говорят об активном центре фермента, представляющем сочетание первого и второго. Аллостерический центр представляет участок молекулы фермента, в результате присоединения к которому определенного низкомапскулярного (а иногда—и высокомолекулярного) вещества изменяется третичная структура белковой молекулы. Как следствие этого изменяется конфигурация активного центра, сопровождающаяся либо увеличением, либо снижением каталитической активности фермента. Это явление лежит в основе так называемой аллостерической регуляции каталитической активности ферментов.





Дата публикования: 2015-01-24; Прочитано: 612 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...