Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Найдем расход жидкости по закону Дарси



.

Поскольку при установившемся движении несжимаемой жидкости расход Q сохраняется вдоль оси r струйки, имеем

, т.е. .

Так как k,m,h и j - постоянные, поэтому получаем

(3.18)

или в развернутом виде

. (3.19)

Это есть дифференциальное уравнение Лапласса в полярных координатах для установившегося плоско- радикального потока несжимаемой жидкости по закону Дарси.

Дважды интегрируя уравнение (3.18),находим его общее решение

или , откуда

Р=С1lnr+С1. (3.20)

Постоянные интегрирования С1 и С2 находим из граничных условий, которые в данном случае имеют вид:

при r = rc P = Pc = const;

при r = rk P = Pk = const. (3.21)

Подставляя граничные условия (3.21) в общее решение (3.20), находим

Pc = C1lnrc + C2;

Pk = C1lnRk + C2,

откуда

(3.22)

(3.23)

Подставляя (3.22) и (3.23) в общее решение (3.20), находим закон распределения давления в плоско- радикальном потоке:

,

или . (3.24)

Из выражений (3.24) следует, что давление в пласте распределяется по логарифмическому закону в зависимости от расстояния r точки до оси скважины; вращением кривой P = P(r) вокруг оси скважины образуется поверхность, называемая воронкой депрессии (рис.11). Воронка депрессии имеет большую крутизну вблизи скважины. Следовательно, основная часть депрессии на пласт сосредоточена в призабойной зоне скважины, параметры которой сильно влияют на дебит скважины.


Рис.11 Рис.12

Изобарами (линиями равного давления) являются концентрические окружности ортогональные траекториям, совпадающими с радиусами указанных окружностей (рис.12).

Градиент давления находим из выражения

.

Подставляя значение С1 из (3.22),

находим . (3.25)

Тогда скорость фильтрации и дебит скважины соответственно

. (3.26)

,

откуда

. (3.27)

Формулу (3.27) называют формулой Дюпюи.

Как следует из формул (3.25) и (3.26), градиент давления dP/dr и скорость фильтрации V в любой точке пласта обратно пропорциональны расстоянию r от этой точки до оси скважины (гиперболический закон). Из графика (рис.13) видно, что при приближении к скважине градиент давления и скорость фильтрации резко возрастают, достигая максимального значения на стенке скважины. Этот вывод очевиден из самого определения скорости фильтрации как отношения объемного расхода жидкости к площади фильтрационной поверхности, т.е.

.


Рис. 13 Рис.14

Дебит скважины, как это следует из формулы Дюпюи (3.27), прямо пропорционален перепаду давления DР = Рк - Рс и одинаков через любую цилиндрическую поверхность, соосную скважине, т.е. от r не зависит. На основании этой же формулы (3.27) можно отметить слабую зависимость дебита скважины Q от изменения значений Rk и rc, поскольку последние входят под знак логарифма. Практическое значение этого факта состоит в том, что:

а) неизвестность точного значения радиуса контура питания Rк не вводит значительных погрешностей в расчет дебита скважины;

б) практически невозможно достигнуть значительного увеличения дебита скважины Q за счет увеличения ее радиуса rс.

Расчетная формула Дюпюи (3.27) позволяет определить коэффициент проницаемости пласта k промысловым методом.

График зависимости дебита скважины Q от перепада давления на скважине DРс = Рк - Рс называется индикаторной диаграммой;которая в рассматриваемом потоке представляется прямой линией (рис.14). Индикаторная диаграмма характеризует продуктивность скважины и помогает устанавливать режим работы скважины.

Отношение дебита скважины Q к перепаду давления DРс называется коэффициентом продуктивности К, выражение которого находится из формулы (3.27)

. (3.28)

Размерность:

Определив промысловым методом коэф. продуктивности К, можно вычислить гидропроводность пласта e

, (3.29)

или, в частности, коэффициент проницаемости

, т.е. , (3.30)

что непосредственно вытекает из формулы Дюлюи (3.27).

Найдем закон движения частиц жидкости. Из известной нам зависимости

, т.е. ,

находим

.

Интегрируя в пределах от 0 до t и,соответственно, от R0 до r, получаем закон движения частиц жидкости

; . (3.31)





Дата публикования: 2015-01-23; Прочитано: 209 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...