Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Основные свойства степенных рядов



Т1 Если степенной ряд (1) имеет радиус сходимости R>0, то на любом отрезке действительной оси вида |x|<=r, 0<r<R (2) (или [-r,r]) целиком лежащем внутри интервала сходимости ряд (1) сходится равномерно.

Для ряда отрезком равномерной сходимости будет отрезок |x-x0|<=r или ([x0-r,x0+r])

Т2 На любом отрезке |x-x0|<=r сумма степенного ряда является непрерывной ф-цией.

Т3 Радиусы сходимости R, R1, R2 соответственно рядов× (5), (6), (7) равны: R1=R2=R3. Итак ряды (6) и (7) полученные с помощью формального интегрирования и дифференцирования имеют те же радиусы сходимости, что и исходный ряд.

Пусть ф-ция f(x) является суммой степенного ряда (9)

Т4 Дифференцирование степенного ряда

Если ф-ция f(x) на интервале (x0-R, x0+R) является суммой ряда (9), то она дифференцируема на этом интервале и её производная f’(x) находится дифференцированием ряда (9):

f’(x)= При этом радиус сходимости полученного ряда = R

Т5 О интегрировании степенного ряда

Степенной ряд (9) можно почленно интегрировать на любом отрезке целиком принадлежащем интервалу сходимости при этом полученный степенной ряд имеет тот же радиус сходимости что и исходный ряд.

Последовательное применение Т4 приводит к утверждению, что ф-ция f имеет на интервале сходимости производные всех порядков, которые могут быть найдены из ряда (9) почленным дифференцированием. При интегрировании и дифференцировании степенного ряда внутри интервала сходимости радиус сходимости R не меняется, однако на концах интервала может изменяться.





Дата публикования: 2015-02-03; Прочитано: 702 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...